OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 701–707

Transmittance constraints in serial decompositions of depolarizing Mueller matrices: the arrow form of a Mueller matrix

José J. Gil  »View Author Affiliations


JOSA A, Vol. 30, Issue 4, pp. 701-707 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000701


View Full Text Article

Enhanced HTML    Acrobat PDF (161 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The passivity of the linear components in the main approaches for serial decompositions of depolarizing Mueller matrices [J. Opt. Soc. Am. A 13, 1106 (1996); J. Opt. Soc. Am. A 26, 1109 (2009)] is dealt with, and it is found that it is not always possible to perform such decompositions in terms of passive components. A compact form of Mueller matrix (“arrow matrix”) associated with any given Mueller matrix, which retains, in a condensed manner, the physical properties relative to transmittance, diattenuation, polarizance, and depolarization, is presented.

© 2013 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization
(290.5855) Scattering : Scattering, polarization

ToC Category:
Physical Optics

History
Original Manuscript: November 5, 2012
Revised Manuscript: January 27, 2013
Manuscript Accepted: February 20, 2013
Published: March 22, 2013

Citation
José J. Gil, "Transmittance constraints in serial decompositions of depolarizing Mueller matrices: the arrow form of a Mueller matrix," J. Opt. Soc. Am. A 30, 701-707 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-4-701


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. C. Jones, “A new calculus for the treatment of optical systems. IV,” J. Opt. Soc Am. 32, 486–493 (1942). [CrossRef]
  2. R. Barakat, “Theory of the coherency matrix for light of arbitrary spectral bandwidth,” J. Opt. Soc. Am. 53, 317–323 (1963). [CrossRef]
  3. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).
  4. R. Barakat, “Conditions for the physical realizability of polarization matrices characterizing passive systems,” J. Mod. Opt. 34, 1535–1544 (1987). [CrossRef]
  5. C. Brosseau and R. Barakat, “Jones and Mueller polarization matrices for random media,” Opt. Commun. 84, 127–132 (1991). [CrossRef]
  6. A. B. Kostinski and R. C. Givens, “On the gain of a passive linear depolarizing system,” J. Mod. Opt. 39, 1947–1952 (1992). [CrossRef]
  7. J. J. Gil, “Characteristic properties of Mueller matrices,” J. Opt. Soc. Am. A 17, 328–334 (2000). [CrossRef]
  8. V. Devlaminck and P. Terrier, “Non-singular Mueller matrices characterizing passive systems,” Optik 121, 1994–1997 (2010). [CrossRef]
  9. Z.-F. Xing, “On the deterministic and non-deterministic Mueller matrix,” J. Mod Opt. 39, 461–484 (1992). [CrossRef]
  10. C. R. Givens and A. B. Kostinski, “A simple necessary and sufficient condition on physically realizable Mueller matrices,” J. Mod. Opt. 40, 471–481 (1993). [CrossRef]
  11. S.-Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996). [CrossRef]
  12. J. J. Gil and E. Bernabéu, “Depolarization and polarization indices of an optical system,” Optica Acta 33, 185–189 (1986). [CrossRef]
  13. J. J. Gil, “Components of purity of a Mueller matrix,” J. Opt. Soc. Am. A 28, 1578–1585 (2011). [CrossRef]
  14. J. J. Gil, “Determination of polarization parameters in matricial representation. Theoretical contribution and development of an automatic measurement device,” Ph.D. thesis (University of Zaragoza, 1983), available from http://www.pepegil.es/PhD-Thesis-JJ-Gil-English.pdf .
  15. E. Compain, S. Poirier, and B. Drévillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers,” Appl. Opt. 38, 3490–3502 (1999). [CrossRef]
  16. A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004). [CrossRef]
  17. S. R. Cloude, “Group theory and polarisation algebra,” Optik 75, 26–36 (1986).
  18. J. J. Gil, “Procedimiento dinamico de medida de matrices de Mueller,” ES patent 8,800,025 (16July1989).
  19. D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31, 6676–6683 (1992). [CrossRef]
  20. D. H. Goldstein, Polarized Light, 3rd ed. (CRC, 2011).
  21. K. Dev and A. Asundi, “Mueller–Stokes polarimetric characterization of transmissive liquid crystal spatial light modulator,” Opt. Lasers Eng. 50, 599–607 (2012). [CrossRef]
  22. D. A. Ramsey and K. C. Ludema, “The influences of roughness on film thickness measurements by Mueller matrix ellipsometry,” Rev. Sci. Instrum. 65, 2874–2881 (1994). [CrossRef]
  23. B. J. Howell, “Measurement of the polarization effects of an instrument using partially polarized light,” Appl. Opt. 18, 809–812 (1979). [CrossRef]
  24. J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J. 40, 1–47 (2007). [CrossRef]
  25. J. M. Correas, P. A. Melero, and J. J. Gil, “Decomposition of Mueller matrices into pure optical media,” Monografías del Seminario Matemático García de Galdeano 27, 233–240 (2003). Available from http://www.unizar.es/galdeano/actas_pau/PDF/233.pdf .
  26. J. J. Gil, “Parallel decompositions of Mueller matrices and polarimetric subtraction,” EPJ Web Conf. 5, 04002 (2010). [CrossRef]
  27. J. J. Gil, I. San José, and R. Ossikovski, “Serial-parallel decompositions of Mueller matrices,” J. Opt. Soc. Am. A 30, 32–50 (2013). [CrossRef]
  28. M. Foldyna, E. Garcia-Caurel, R. Ossikovski, A. De Martino, and J. J. Gil, “Retrieval of a non-depolarizing component of experimentally determined depolarizing Mueller matrices,” Opt. Express 17, 12794–12806 (2009). [CrossRef]
  29. S.-Y. Lu and R. A. Chipman, “Homogeneous and inhomogeneous Jones matrices,” J. Opt. Soc. Am. A 11, 766–773 (1994). [CrossRef]
  30. J. Morio and F. Goudail, “Influence of the order of diattenuator, retarder and polarizer in polar decomposition of Mueller matrices,” Opt. Lett. 29, 2234–2236 (2004). [CrossRef]
  31. R. Ossikovski, A. De Martino, and S. Guyot, “Forward and reverse product decompositions of depolarizing Mueller matrices,” Opt. Lett. 32, 689–691 (2007). [CrossRef]
  32. M. Anastasiadou, S. Ben Hatit, R. Ossikovski, S. Guyot, and A. De Martino, “Experimental validation of the reverse polar decomposition of depolarizing Mueller matrices,” JEOS RP 2, 07018 (2007). [CrossRef]
  33. C. R. Givens and A. B. Kostinski, “A simple necessary and sufficient condition on physically realizable Mueller matrices,” J. Mod. Opt. 40, 471–481 (1993). [CrossRef]
  34. R. A. Chipman, “Mueller matrices,” in The Handbook of Optics (McGraw-Hill, 2010), Chap. 14.
  35. S. R. Cloude, “Conditions for the physical realisability of matrix operators in polarimetry,” Proc. SPIE 1166, 177–185 (1989). [CrossRef]
  36. R. Ossikovski, “Analysis of depolarizing Mueller matrices through a symmetric decomposition,” J. Opt. Soc. Am. A 26, 1109–1118 (2009). [CrossRef]
  37. R. Sridhar and R. Simon, “Normal form for Mueller matrices in polarization optics,” J. Mod Opt. 41, 1903–1915 (1994). [CrossRef]
  38. C. V. M. van der Mee, “An eigenvalue criterion for matrices transforming Stokes parameters,” J. Math. Phys. 34, 5072–5088 (1993). [CrossRef]
  39. A. V. Gopala Rao, K. S. Mallesh, and Sudha, “On the algebraic characterization of a Mueller matrix in polarization optics. I. Identifying a Mueller matrix from its N matrix,” J. Mod. Opt. 45, 955–987 (1998). [CrossRef]
  40. A. V. Gopala Rao, K. S. Mallesh, and Sudha, “On the algebraic characterization of a Mueller matrix in polarization optics. II. Necessary and sufficient conditions for Jones derived Mueller matrices,” J. Mod. Opt. 45, 989–999 (1998).
  41. R. Ossikovski, “Canonical forms of depolarizing Mueller matrices,” J. Opt. Soc. Am. A 27, 123–130 (2010). [CrossRef]
  42. J. J. Gil and E. Bernabéu, “Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from its Mueller matrix,” Optik 76, 67–71 (1987).
  43. J. J. Gil, “Mueller matrices,” in Light Scattering from Microstructures (Springer, 2000).
  44. R. Simon, “Nondepolarizing systems and degree of polarization,” Opt. Commun. 77, 349–354 (1990). [CrossRef]
  45. R. Ossikovski, “Alternative depolarization criteria for Mueller matrices,” J. Opt. Soc. Am. A 27, 808–814 (2010). [CrossRef]
  46. J. J. Gil, J. M. Correas, P. A. Melero, and C. Ferreira, “Generalized polarization algebra,” Monografías del Seminario Matemático García de Galdeano 31, 161–167 (2004). Available from http://www.unizar.es/galdeano/actas_pau/PDFVIII/pp161-167.pdf .
  47. I. San Jose and J. J. Gil, “Invariant indices of polarimetric purity. Generalized indices of purity for n×n covariance matrices,” Opt. Commun. 284, 38–47 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited