OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 741–748

Interferometric method to measure the Goos–Hänchen shift

Chandravati Prajapati, Dilip Ranganathan, and Joby Joseph  »View Author Affiliations

JOSA A, Vol. 30, Issue 4, pp. 741-748 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (620 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate an interferometric method to measure the Goos–Hänchen (GH) shift, which is based on observing the interference between p- and s-polarized beams. In our method both p- and s-polarized beams are observed simultaneously and across the entire beam profile. To demonstrate our method, we measured the GH shift of aluminum (Al) and glass at different values of the incidence angle ranging from 20° to 70°, with a helium–neon laser as source. We compared the experimental result with theoretical calculations and found a good agreement between them. Our method also enables us to measure the GH shift at any point across the entire beam profile, for arbitrary beam profiles. This is not possible with the methods currently in use. We presented the observed values for the Gaussian mode used, which enables us to find the relative shifts between the p and s components at various points on the incident profile after reflection.

© 2013 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(260.3160) Physical optics : Interference
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

Original Manuscript: November 9, 2012
Revised Manuscript: December 24, 2012
Manuscript Accepted: March 1, 2013
Published: March 27, 2013

Chandravati Prajapati, Dilip Ranganathan, and Joby Joseph, "Interferometric method to measure the Goos–Hänchen shift," J. Opt. Soc. Am. A 30, 741-748 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Goos and H. Hanchen, “Ein neuer and fundamentaler Versuch zur total Reflection,” Ann. Phys. 436, 333–346 (1947).
  2. K. Artmann, “Calculation of the lateral shift of totally reflected beams,” Ann. Phys. 437, 87–102 (1948).
  3. R. H. Renard, “Total reflection: a new evaluation of the Goos–Hänchen shift,” J. Opt. Soc. Am. 54, 1190–1197 (1964). [CrossRef]
  4. C. Bonnet, D. Chauvat, O. Emile, F. Bretenaker, A. L. Floch, and L. Dutriaux, “Measurement of positive and negative Goos–Hänchen effects for metallic gratings near wood anomalies,” Opt. Lett. 26, 666–668 (2001). [CrossRef]
  5. C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett. 91, 133903 (2003). [CrossRef]
  6. H. M. Lai and S. W. Chan, “Large and negative Goos–Hänchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett. 27, 680–682 (2002). [CrossRef]
  7. W. J. Wild and C. L. Giles, “Goos–Hänchen shifts for absorbing media,” Phys. Rev. A 25, 2099–2101 (1982). [CrossRef]
  8. P. T. Leung, C. W. Chen, and H. P. Chiang, “Large negative Goos–Hanchen shift at metal surfaces,” Opt. Commun. 276, 206–208 (2007). [CrossRef]
  9. Y. Wang, Y. Liu, J. Xu, H. Zhang, L. Bai, Y. Xiao, J. Yan, and X. Zhang, “Numerical study of lateral displacements of Gaussian beams reflected from weakly absorbing media near Brewster dip and reflected from strongly absorbing media,” J. Opt. A 11, 105701 (2009). [CrossRef]
  10. M. Merano, A. Aiello, G. W. ’t Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, “Observation of Goos–Hanchen shifts in metallic reflection,” Opt. Express 15, 15928–15934 (2007). [CrossRef]
  11. J. B. Gotte, A. Aiello, and J. P. Woerdman, “Loss-induced transition of the Goos–Hänchen effect for metals and dielectrics,” Opt. Express 16, 3961–3969 (2008). [CrossRef]
  12. H. M. Lai, S. W. Chan, and W. H. Wong, “Nonspecular effects on reflection from absorbing media at and around the Brewster dip,” J. Opt. Soc. Am. A 23, 3208–3216 (2006). [CrossRef]
  13. J. He, J. Yi, and S. He, “Giant negative Goos–Hänchen shifts for a photonic crystal with a negative effective index,” Opt. Express 14, 3024–3029 (2006). [CrossRef]
  14. L. G. Wang and S. Y. Zhu, “Large negative lateral shifts from the Kretschmann–Raether configuration with left-handed materials,” Appl. Phys. Lett. 87, 221102 (2005). [CrossRef]
  15. M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdman, “Observing angular deviations in the specular reflection of light beam,” Nat. Photonics 3, 337–340 (2009). [CrossRef]
  16. H. G. L. Schwefel, W. Köhler, Z. H. Lu, J. Fan, and L. J. Wang, “Direct experimental observation of the single reflection optical Goos–Hänchen shift,” Opt. Lett. 33, 794–796 (2008). [CrossRef]
  17. D. J. Rhodes and C. K. Carniglia, “Measurement of Goos–Hänchen shift at grazing incidence using Lloyd’s mirror,” J. Opt. Soc. Am. 67, 679–683 (1977). [CrossRef]
  18. Chun-Fang-Li, “Unified theory for Goos–Hänchen and Imbert–Fedorov effects,” Phys. Rev. A 76, 013811 (2007). [CrossRef]
  19. C. Prajapati and D. Ranganathan, “Goos–Hänchen and Imbert–Fedorov shifts for Hermite–Gauss beams,” J. Opt. Soc. Am. A 29, 1377–1382 (2012). [CrossRef]
  20. N. Hermosa, M. Merano, A. Aiello, and J. P. Woerdman, “Orbital angular momentum induced beam shifts,” Proc. SPIE 7950, 79500F (2011). [CrossRef]
  21. M. Merano, N. Hermosa, and J. P. Woerdman, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82, 023817 (2010). [CrossRef]
  22. A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos–Hanchen and Imbert–Fedorov shifts,” Opt. Lett. 33, 1437–1439 (2008). [CrossRef]
  23. The refractive index of aluminium is taken from the website http://refractiveindex.info at 633 nm wavelength .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited