OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 769–782

Quantitative orientation-independent differential interference contrast microscope with fast switching shear direction and bias modulation

Michael Shribak  »View Author Affiliations


JOSA A, Vol. 30, Issue 4, pp. 769-782 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000769


View Full Text Article

Enhanced HTML    Acrobat PDF (3973 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a quantitative orientation-independent differential interference contrast (DIC) microscope, which allows bias retardation to be modulated and shear directions to be switched rapidly without any mechanical movement. The shear direction is switched by a regular liquid-crystal cell sandwiched between two standard DIC prisms. Another liquid-crystal cell modulates the bias. Techniques for measuring parameters of DIC prisms and calibrating the bias are shown. Two sets of raw DIC images with the orthogonal shear directions are captured within 1 s. Then the quantitative image of optical path gradient distribution within a thin optical section is computed. The gradient data are used to obtain a quantitative distribution of the optical path, which represents the refractive index gradient or height distribution. Computing enhanced regular DIC images with any desired shear direction is also possible.

© 2013 Optical Society of America

OCIS Codes
(100.2980) Image processing : Image enhancement
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(180.0180) Microscopy : Microscopy

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: December 21, 2012
Revised Manuscript: February 20, 2013
Manuscript Accepted: February 20, 2013
Published: March 27, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Michael Shribak, "Quantitative orientation-independent differential interference contrast microscope with fast switching shear direction and bias modulation," J. Opt. Soc. Am. A 30, 769-782 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-4-769


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. H. Smith, “Interference microscope,” U.S. patent 2,601,175 (August5, 1947).
  2. F. H. Smith, “Microscopic interferometry,” Research 8, 385–395 (1955).
  3. G. Nomarski, “Interferential polarizing device for study of phase object,” U.S. patent 2,924,142 (May14, 1952).
  4. R. D. Allen, G. B. David, and G. Nomarski, “The Zeiss-Nomarski differential equipment for transmitted light microscopy,” Zeitschrift für Wissenschaftliche Mikroscopie und Mickroskopische Technik 69, 193–221(1969).
  5. S. Inoué, “Ultrathin optical sectioning and dynamic volume investigation with conventional light microscopy,” in Three-Dimensional Confocal Microscopy: Volume Investigation of Biological Systems, J. Stevens, ed. (Academic, 1994), pp. 397–419.
  6. R. Oldenbourg and M. Shribak, “Microscopes,” in Geometrical and Physical Optics, Polarized Light, Components and Instruments, M. Bass, ed., 3rd ed., Vol. 1 of Handbook of Optics (McGraw-Hill, 2010), pp. 28.1–28.62.
  7. G. M. Holzwarth, S. C. Webb, D. J. Kubinski, and N. S. Allen, “Improving DIC microcopy with polarization modulation,” J. Microsc. 188, 249–254 (1997). [CrossRef]
  8. G. M. Holzwarth, D. B. Hill, and E. B. McLaughlin, “Polarization-modulated differential-interference contrast microscopy with a variable retarder,” Appl. Opt. 39, 6288–6294 (2000). [CrossRef]
  9. H. Ooki, Y. Iwasaki, and J. Iwasaki, “Differential interference contrast microscope with differential detection for optimizing image contrast,” Appl. Opt. 35, 2230–2234 (1996). [CrossRef]
  10. P. Hariharan and M. Roy, “Achromatic phase-shifting for two-wavelength phase-stepping interferometry,” Opt. Commun. 126, 220–222 (1996). [CrossRef]
  11. M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7–12 (2004). [CrossRef]
  12. S. V. King, A. R. Libertun, C. Preza, and C. J. Cogswell, “Calibration of a phase-shifting DIC microscope for quantitative phase imaging,” Proc. SPIE 6443, 64430M (2007).
  13. H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun. 260, 117–126 (2006). [CrossRef]
  14. H. Ishiwata, M. Itoh, and T. Yatagai, “A new analysis for extending the measurement range of the retardation-modulated differential interference contrast (RM-DIC) microscope,” Opt. Commun. 281, 1412–1423 (2008). [CrossRef]
  15. A. Noguchi, H. Ishiwata, M. Itoh, and T. Yatagai, “Optical sectioning in differential interference contrast microscopy,” Opt. Commun. 282, 3223–3230 (2009). [CrossRef]
  16. M. Shribak and S. Inoué, “Orientation-independent differential interference contrast microscopy,” Appl. Opt. 45, 460–469 (2006). [CrossRef]
  17. M. Shribak, “Orientation-independent differential interference contrast microscopy technique and device,” U.S. patent 7,564,618 (December17, 2003).
  18. M. Shribak, “Orientation-independent differential interference contrast microscopy technique and device,” U.S. patent 7,233,434 (December17, 2003).
  19. L. Fabre, Y. Inoue, T. Aoki, and S. Kawakami, “Differential interference contrast microscope using photonic crystals for phase imaging and three-dimensional shape reconstruction,” Appl. Opt. 48, 1347–1357 (2009). [CrossRef]
  20. C. Preza, D. L. Snyder, and J. A. Conchello, “Theoretical development and experimental evaluation of imaging models for differential-interference-contrast-microscopy,” J. Opt. Soc. Am. A 16, 2185–2199 (1999). [CrossRef]
  21. H. Hogan, “Getting the small picture,” Photonics Spectra 37(4), 58–64 (2003).
  22. R. Danz and P. Gretscher, “C-DIC: a new microscopy method for rational study of phase structures in incident light arrangement,” Thin Solid Films 462-463, 257–262 (2004). [CrossRef]
  23. M. Robinson, J. Chen, and G. Sharp, Polarization Engineering for LCD Projection (Wiley, 2005).
  24. R. A. Chipman, “Polarimetry,” in Geometrical and Physical Optics, Polarized Light, Components and Instruments, M. Bass, ed., 3rd ed., Vol. 1 of Handbook of Optics (McGraw-Hill, 2010), pp. 15.1–15.46.
  25. T. Scharf, Polarized Light in Liquid Crystals and Polymers (Wiley, 2007).
  26. E. Lueder, Liquid Crystal Displays: Addressing Schemes and Electro-Optical Effects (Wiley, 2010).
  27. S. Gauza and S.-T. Wu, “Liquid crystals,” in Atmospheric Optics, Modulators, Fiber Optics, X-Ray And Neutron Optics, M. Bass, ed., 3rd ed., Vol. 5 of Handbook of Optics (McGraw-Hill, 2010), pp. 8.1–8.40.
  28. E. D. Salmon and P. Tran, “High resolution video-enhanced differential-interference contrast (VE-DIC) light microscopy,” Meth. Cell Biol. 56, 153–184 (1998).
  29. B. J. Schnapp, “View single microtubules by video light microscopy,” Meth. Enzymol. 134, 561–573 (1986).
  30. M. Shribak, S. Inoué, and R. Oldenbourg, “Rectifiers for suppressing depolarization caused by differential transmission and phase shift in high NA lenses,” Proc. SPIE 4481, 163–174 (2001).
  31. M. Shribak, S. Inoué, and R. Oldenbourg, “Polarization aberrations caused by differential transmission and phase shift in high NA lenses: theory, measurement and rectification,” Opt. Eng. 41, 943–954 (2002). [CrossRef]
  32. P. Hariharan, Optical Interferometry, 2nd ed. (Academic, 2003).
  33. M. Shribak, Y. Otani, and T. Yoshizawa, “Autocollimation polarimeter for measuring two-dimensional distribution of birefringence,” Opt. Spectrosc. 89, 155–159 (2000). [CrossRef]
  34. M. Shribak and R. Oldenbourg, “Techniques for fast and sensitive measurements of two-dimensional birefringence distributions,” Appl. Opt. 42, 3009–3017 (2003). [CrossRef]
  35. M. Shribak, “Complete polarization state generator with one variable retarder and its application for fast and sensitive measuring of two-dimensional birefringence distribution,” J. Opt. Soc. Am. A 28, 410–419 (2011). [CrossRef]
  36. B. Heise, A. Sonnleitner, and E. P. Klement, “DIC image reconstruction on large cell scans,” Microsc. Res. Tech. 66, 312–320 (2005). [CrossRef]
  37. C. Preza, “Rotational-diversity phase estimation from differential-interference-contrast microscopy images,” J. Opt. Soc. Am. A 17, 415–424 (2000). [CrossRef]
  38. E. B. van Munster, L. J. van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference contrast microscope,” J. Microsc. 188, 149–157 (1997). [CrossRef]
  39. S.-K. Yu, T.-K. Liu, and S.-C. Lin, “Height measurement of transparent objects by adopting differential interference contrast technology,” Appl. Opt. 49, 2588–2596 (2010). [CrossRef]
  40. S. A. Prahl, A. Dayton, K. Juedes, E. J. Sanchez, R. P. Lopez, and D. D. Duncan, “Experimental validation of phase using Nomarski microscopy with an extended Fried algorithm,” J. Opt. Soc. Am. A 29, 2104–2109 (2012). [CrossRef]
  41. T. J. Holmes, S. Bhattacharyya, J. A. Cooper, D. Hanzel, V. Krishnamurthi, W. Lin, B. Roysam, D. H. Szarowski, and J. N. Turner, “Light microscopic images reconstructed by maximum likelihood deconvolution,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995) pp. 389–402.
  42. D. Biggs and M. Andrews, “Acceleration of iterative image restoration algorithms,” Appl. Opt. 36, 1766–1775 (1997). [CrossRef]
  43. M. Shribak, J. LaFountain, D. Biggs, and S. Inoué, “Orientation-independent differential interference contrast microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt. 13, 014011 (2008). [CrossRef]
  44. S. B. Mehta and C. J. R. Sheppard, “Sample-less calibration of the differential interference contrast microscope,” Appl. Opt. 49, 2954–2968 (2010). [CrossRef]
  45. C. B. Müller, K. Weiß, W. Richtering, A. Loman, and J. Enderlein, “Calibrating differential interference contrast microscopy with dual-focus fluorescence correlation spectroscopy,” Opt. Express 16, 4322–4329 (2008). [CrossRef]
  46. D. D. Duncan, D. G. Fischer, A. Dayton, and S. A. Prahl, “Quantitative Carré differential interference contrast microscopy to assess phase and amplitude,” J. Opt. Soc. Am. A 28, 1297–1306(2011). [CrossRef]
  47. M. I. Shribak, “Device for measuring birefringence of reflecting optical data carrier,” USSR patent 1,414,097 (March17, 1986).
  48. M. I. Shribak, “A compensation method for measuring birefringence,” Sov. J. Opt. Technol. 60, 546–549 (1993).
  49. M. I. Shribak, “Autocollimating detectors of birefringence,” Proc. SPIE 2782, 805–813 (1996).
  50. N. H. Hartshorne and A. Stuart, Crystals and the Polarizing Microscope, 4th ed. (Edward Arnold, 1970).
  51. M. I. Shribak, “Polarization separation of the forward and reverse beams in the reading of reflective carriers of information,” Sov. J. Opt. Technol. 53, 389–391 (1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited