OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 806–812

Optical encryption using multiple intensity samplings in the axial domain

Wen Chen, Xudong Chen, Arun Anand, and Bahram Javidi  »View Author Affiliations

JOSA A, Vol. 30, Issue 5, pp. 806-812 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2057 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Image encryption with optical means has attracted attention due to its inherent multidimensionality and degrees of freedom, including phase, amplitude, polarization, and wavelength. In this paper, we propose an optical encoding system based on multiple intensity samplings of the complex-amplitude wavefront with axial translation of the image sensor. The optical encoding system is developed based on a single optical path, where multiple diffraction patterns, i.e., ciphertexts, are sequentially recorded through the axial translation of a CCD camera. During image decryption, an iterative phase retrieval algorithm is proposed for extracting the plaintext from ciphertexts. The results demonstrate that the proposed phase retrieval algorithm possesses a rapid convergence rate during image decryption, and high security can be achieved in the proposed optical cryptosystem. In addition, other advantages of the proposed method, such as high robustness against ciphertext contaminations, are also analyzed.

© 2013 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(100.5070) Image processing : Phase retrieval
(110.1758) Imaging systems : Computational imaging
(100.4998) Image processing : Pattern recognition, optical security and encryption

ToC Category:
Imaging Systems

Original Manuscript: December 6, 2012
Revised Manuscript: February 13, 2013
Manuscript Accepted: March 6, 2013
Published: April 3, 2013

Wen Chen, Xudong Chen, Arun Anand, and Bahram Javidi, "Optical encryption using multiple intensity samplings in the axial domain," J. Opt. Soc. Am. A 30, 806-812 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Réfrégier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995). [CrossRef]
  2. B. Javidi, “Securing information with optical technologies,” Phys. Today 50(3), 27–32 (1997). [CrossRef]
  3. O. Matoba, T. Nomura, E. P. Cabré, M. S. Millán, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128–1148 (2009). [CrossRef]
  4. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999). [CrossRef]
  5. O. Matoba and B. Javidi, “Encrypted optical memory systems based on multidimensional keys for secure data storage and communications,” IEEE Circuits Devices Mag. 16(5), 8–15 (2000).
  6. N. Towghi, B. Javidi, and Z. Luo, “Fully phase encrypted image processor,” J. Opt. Soc. Am. A 16, 1915–1927 (1999). [CrossRef]
  7. A. Carnicer, M. M. Usategui, S. Arcos, and I. Juvells, “Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys,” Opt. Lett. 30, 1644–1646 (2005). [CrossRef]
  8. W. Stallings, Cryptography and Network Security: Principles and Practice, 4th ed. (Prentice-Hall, 2006).
  9. P. Kumar, A. Kumar, J. Joseph, and K. Singh, “Vulnerability of the security enhanced double random phase-amplitude encryption scheme to point spread function attack,” Opt. Lasers Eng. 50, 1196–1201 (2012). [CrossRef]
  10. Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, “Resistance of the double random phase encryption against various attacks,” Opt. Express 15, 10253–10265 (2007). [CrossRef]
  11. E. Pérez-Cabré, M. Cho, and B. Javidi, “Information authentication using photon-counting double-random-phase encrypted images,” Opt. Lett. 36, 22–24 (2011). [CrossRef]
  12. E. Pérez-Cabré, H. C. Abril, M. S. Millan, and B. Javidi, “Photon-counting double-random-phase encoding for secure image verification and retrieval,” J. Opt. 14, 094001 (2012). [CrossRef]
  13. W. Chen, X. Chen, and C. J. R. Sheppard, “Optical image encryption based on diffractive imaging,” Opt. Lett. 35, 3817–3819 (2010). [CrossRef]
  14. W. Chen and X. Chen, “Optical cryptography topology based on a three-dimensional particle-like distribution and diffractive imaging,” Opt. Express 19, 9008–9019 (2011). [CrossRef]
  15. W. Chen, X. Chen, and C. J. R. Sheppard, “Optical double-image cryptography based on diffractive imaging with a laterally-translated phase grating,” Appl. Opt. 50, 5750–5757(2011). [CrossRef]
  16. T. J. Naughton, B. M. Hennelly, and T. Dowling, “Introducing secure modes of operation for optical encryption,” J. Opt. Soc. Am. A 25, 2608–2617 (2008). [CrossRef]
  17. F. Goudail, F. Bollaro, B. Javidi, and P. Réfrégier, “Influence of a perturbation in a double phase-encoding system,” J. Opt. Soc. Am. A 15, 2629–2638 (1998). [CrossRef]
  18. H. E. Hwang and P. Han, “Fast algorithm of phase masks for image encryption in the Fresnel domain,” J. Opt. Soc. Am. A 23, 1870–1874 (2006). [CrossRef]
  19. Y. Zhang and B. Wang, “Optical image encryption based on interference,” Opt. Lett. 33, 2443–2445 (2008). [CrossRef]
  20. Z. Liu, Q. Guo, L. Xu, M. A. Ahmad, and S. Liu, “Double image encryption by using iterative random binary encoding in gyrator domains,” Opt. Express 18, 12033–12043 (2010). [CrossRef]
  21. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  22. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef]
  23. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometer-sized non-crystalline specimens,” Nature 400, 342–344 (1999). [CrossRef]
  24. J. Miao, D. Sayre, and H. N. Chapman, “Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects,” J. Opt. Soc. Am. A 15, 1662–1669 (1998). [CrossRef]
  25. J. M. Zou, I. Vartanyants, M. Gao, R. Zhang, and L. A. Nagahara, “Atomic resolution imaging of a carbon nanotube from diffraction intensities,” Science 300, 1419–1421 (2003). [CrossRef]
  26. H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004). [CrossRef]
  27. F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A 75, 043805 (2007). [CrossRef]
  28. A. Anand and B. Javidi, “Three-dimensional microscopy with single-beam wavefront sensing and reconstruction from speckle fields,” Opt. Lett. 35, 766–768 (2010). [CrossRef]
  29. P. F. Almoro, J. Glückstad, and S. G. Hanson, “Single-plane multiple speckle pattern phase retrieval using a deformable mirror,” Opt. Express 18, 19304–19313 (2010). [CrossRef]
  30. W. Chen and X. Chen, “Quantitative phase retrieval of complex-valued specimens based on noninterferometric imaging,” Appl. Opt. 50, 2008–2015 (2011). [CrossRef]
  31. W. Chen and X. Chen, “Focal-plane detection and object reconstruction in the noninterferometric phase imaging,” J. Opt. Soc. Am. A 29, 585–592 (2012). [CrossRef]
  32. P. F. Almoro, G. Pedrini, P. N. Gundu, W. Osten, and S. G. Hanson, “Phase microscopy of technical and biological samples through random phase modulation with a diffuser,” Opt. Lett. 35, 1028–1030 (2010). [CrossRef]
  33. G. Pedrini, F. Zhang, and W. Osten, “Phase retrieval by pinhole scanning,” Opt. Lett. 36, 1113–1115 (2011). [CrossRef]
  34. A. Anand, V. Chhaniwal, and B. Javidi, “Quantitative cell imaging using single beam phase retrieval method,” J. Biomed. Opt. 16, 060503 (2011). [CrossRef]
  35. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948). [CrossRef]
  36. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef]
  37. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  38. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).
  39. W. Chen, C. Quan, and C. J. Tay, “Extended depth of focus in a particle field measurement using a single-shot digital hologram,” Appl. Phys. Lett. 95, 201103 (2009). [CrossRef]
  40. K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009). [CrossRef]
  41. O. Matoba and B. Javidi, “Encrypted optical storage with wavelength-key and random phase codes,” Appl. Opt. 38, 6785–6790 (1999). [CrossRef]
  42. The plaintext (Baboon): http://sipi.usc.edu/database .
  43. C. Wu, T. W. Ng, and A. Neild, “Phase and amplitude retrieval of objects embedded in a sinusoidal background from its diffraction pattern,” Appl. Opt. 49, 1831–1837 (2010). [CrossRef]
  44. B. Hennelly and J. T. Sheridan, “Optical image encryption by random shifting in fractional Fourier domains,” Opt. Lett. 28, 269–271 (2003). [CrossRef]
  45. S. Kishk and B. Javidi, “Watermarking of three-dimensional objects by digital holography,” Opt. Lett. 28, 167–169 (2003). [CrossRef]
  46. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Experimental implementation of the gyrator transform,” J. Opt. Soc. Am. A 24, 3135–3139 (2007). [CrossRef]
  47. R. P. Yu, and D. M. Paganin, “Blind phase retrieval for aberrated linear shift-invariant imaging systems,” New J. Phys. 12, 073040 (2010). [CrossRef]
  48. S. S. Gorthi and E. Schonbrun, “Phase imaging flow cytometry using a focus-stack collecting microscope,” Opt. Lett. 37, 707–709 (2012). [CrossRef]
  49. G. Situ and J. Zhang, “Double random-phase encoding in the Fresnel domain,” Opt. Lett. 29, 1584–1586 (2004). [CrossRef]
  50. R. K. Wang, I. A. Watson, and C. Chatwin, “Random phase encoding for optical security,” Opt. Eng. 35, 2464–2469 (1996). [CrossRef]
  51. Y. Shi, G. Situ, and J. Zhang, “Multiple-image hiding in the Fresnel domain,” Opt. Lett. 32, 1914–1916 (2007). [CrossRef]
  52. H. E. Hwang, H. T. Chang, and W. N. Lie, “Fast double-phase retrieval in Fresnel domain using modified Gerchberg-Saxton algorithm for lensless optical security systems,” Opt. Express 17, 13700–13710 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited