OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 813–820

Radiative transport theory for light propagation in luminescent media

Derya Şahin and Boaz Ilan  »View Author Affiliations


JOSA A, Vol. 30, Issue 5, pp. 813-820 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000813


View Full Text Article

Enhanced HTML    Acrobat PDF (502 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a generalization of radiative transport theory to account for light propagation in luminescent random media. This theory accounts accurately for the multiple absorption and reemission of light at different wavelengths and for anisotropic luminescence. To test this theory, we apply it to model light propagation in luminescent solar concentrators (LSCs). The source-iteration method is used in two spatial dimensions for LSCs based on semiconductor quantum dots and aligned nanorods. The LSC performance is studied in detail, including its dependence on particle concentration and the anisotropy of the luminescence. The computational results using this theory are compared with Monte Carlo simulations of photon transport and found to agree qualitatively. The proposed approach offers a deterministic methodology, which can be advantageous for analytic and computational modeling. This approach has potential for more efficient and cost-effective LSCs, as well as in other applications involving luminescent radiation.

© 2013 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(220.1770) Optical design and fabrication : Concentrators
(260.3800) Physical optics : Luminescence
(290.4210) Scattering : Multiple scattering
(350.6050) Other areas of optics : Solar energy

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: November 30, 2012
Revised Manuscript: February 26, 2013
Manuscript Accepted: March 11, 2013
Published: April 8, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Derya Şahin and Boaz Ilan, "Radiative transport theory for light propagation in luminescent media," J. Opt. Soc. Am. A 30, 813-820 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-5-813


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  2. A. Ishimaru, Wave Propagation and Scattering in Random Media (Wiley-IEEE, 1999).
  3. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1: theory of operation and techniques for performance evaluation,” Appl. Opt. 18, 3090–3110 (1979). [CrossRef]
  4. M. S. de Cardona, M. Carrascosa, F. Meseguer, F. Cusso, and F. Jaque, “Outdoor evaluation of luminescent solar concentrator prototypes,” Appl. Opt. 20, 2934–2940 (1985).
  5. R. W. Olson, F. L. Roger, and M. D. Fayer, “Luminescent solar concentrators and the reabsorption problem,” Appl. Opt. 20, 2934–2940 (1981). [CrossRef]
  6. V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101, 123114 (2007). [CrossRef]
  7. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008). [CrossRef]
  8. L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi RRL 2, 257–259 (2008). [CrossRef]
  9. P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals,” Adv. Funct. Mater. 19, 2714–2719 (2009). [CrossRef]
  10. S. Tsoi, D. J. Broer, C. W. Bastiaansen, and M. G. Debije, “Patterned dye structures limit reabsorption in luminescent solar concentrators,” Opt. Express 18, A536–A543 (2010). [CrossRef]
  11. C. L. Mulder, P. D. Reusswig, A. M. Velázquez, H. Kim, C. Rotschild, and M. A. Baldo, “Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling,” Opt. Express 18, A79–A90 (2010). [CrossRef]
  12. S. McDowall, B. L. Johnson, and D. L. Patrick, “Simulations of luminescent solar concentrators: effects of polarization and fluorophore alignment,” J. Appl. Phys. 108, 053508 (2010). [CrossRef]
  13. D. Şahin, B. Ilan, and D. Kelley, “Monte-Carlo simulations of light scattering in luminescent solar concentrators based on semiconductor nanoparticles,” J. Appl. Phys 110, 1–8 (2011).
  14. R. H. Inman, G. V. Scherbatyuk, D. Medvedko, A. Gopinathan, and S. Ghosh, “Cylindrical luminescent solar concentrators with near-infrared quantum dots,” Opt. Express 19, 24308–24313 (2011). [CrossRef]
  15. F. Purcell-Milton and Y. K. Gun’ko, “Quantum dots for luminescent solar concentrators,” J. Mater. Chem. 22, 16687–16697 (2012). [CrossRef]
  16. H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5, 5798–5802 (2012). [CrossRef]
  17. P. P. C. Verbunt, S. Tsoi, M. G. Debije, D. J. Broer, C. W. Bastiaansen, C.-W. Lin, and D. K. G. de Boer, “Increased efficiency of luminescent solar concentrators after application of organic wavelength selective mirrors,” Opt. Express 20, A655–A668 (2012). [CrossRef]
  18. H. Gao and H. Zhao, “A fast forward solver of radiative transfer equation,” Transp. Theory Stat. Phys. 38, 149–192 (2009). [CrossRef]
  19. S. A. Prahl, M. Keizer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in SPIE Proceedings of Dosimetry of Laser Radiation in Medicine and Biology, Vol. IS(5), SPIE Institute Series (SPIE, 1989), pp. 102–111.
  20. L. Wang, S. L. Jacques, and L. Zheng, “Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995). [CrossRef]
  21. K. M. Case and P. F. Zweifel, Linear Transport Theory(Addison-Wesley, 1967).
  22. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012). [CrossRef]
  23. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Matter 15, 2854–2860 (2003). [CrossRef]
  24. A. Chatten, K. Barnham, B. Buxton, N. Ekins-Daukes, and M. Malik, “Quantum dot solar concentrators,” Semiconductors 38, 909–917 (2004). [CrossRef]
  25. D. Yudovsky and L. Pilon, “Modeling the local excitation fluence rate and fluorescence emission in absorbing and strongly scattering multilayered media,” Appl. Opt. 49, 6072–6084 (2010). [CrossRef]
  26. G. Y. Panasyuk, Z.-M. Wang, J. C. Schotland, and V. A. Markel, “Fluorescent optical tomography with large data sets,” Opt. Lett. 33, 1744–1746 (2008). [CrossRef]
  27. A. D. Zacharopoulos, P. Svenmarker, J. Axelsson, M. Schweiger, S. R. Arridge, and S. Andersson-Engels, “A matrix-free algorithm for multiple wavelength fluorescence tomography,” Appl. Phys. Lett. 17, 3042–3051 (2009).
  28. C. T. Xu, J. Axelsson, and S. Andersson-Engels, “Fluorescence diffuse optical tomography using upconverting nanoparticles,” Appl. Phys. Lett. 94, 251107 (2009). [CrossRef]
  29. J. T. Kajiya, “The rendering equation,” Comput. Graph. 20, 143–150 (1986). [CrossRef]
  30. A. S. Glassner, Principles of Digital Images Synthesis (Morgan Kaufmann, 1995).
  31. H. W. Jensen, Realistic Image Synthesis Using Photon Mapping (AK Peters, 2001).
  32. D. D. Cooke and M. Kerker, “Light scattering from long thin glass cylinders at oblique incidence,” J. Opt. Soc. Am. 59, 43–49 (1969). [CrossRef]
  33. J. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” J. Astrophys. 93, 70–83 (1941). [CrossRef]
  34. E. Hecht, Optics (Addison-Wesley, 1987).
  35. K. Emery, “Reference solar spectral irradiance: air mass 1.5,” Tech. Rep. (ASTM, 2000), http://rredc.nrel.gov/solar/spectra/am1.5 .
  36. E. E. Lewis and W. F. J. Miller, Computational Methods of Neutron Transport (Wiley, 1984).
  37. K. D. Lathrop, “Ray effects in discrete ordinates equations,” Nucl. Sci. Eng. 32, 357–369 (1968).
  38. L. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  39. A. D. Kim and M. Moscoso, “Radiative transfer computations for optical beams,” J. Comput. Phys. 185, 50–60 (2003). [CrossRef]
  40. G. Bal and O. Pinaud, “Accuracy of transport models for waves in random media,” Wave Motion 43, 561–578 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited