OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 821–824

Polarization of orbital angular momentum carrying laser beams

Jessica Conry, Reeta Vyas, and Surendra Singh  »View Author Affiliations


JOSA A, Vol. 30, Issue 5, pp. 821-824 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000821


View Full Text Article

Enhanced HTML    Acrobat PDF (249 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polarization of orbital angular momentum (OAM) carrying Laguerre–Gauss optical vortex beams, consistent with Maxwell’s equations, is discussed, and experimental evidence for it is presented. The experiments reveal several novel features of such beams, including OAM dependent reconstruction of polarization and spatial profile during propagation.

© 2013 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(140.3295) Lasers and laser optics : Laser beam characterization
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

History
Original Manuscript: January 23, 2013
Manuscript Accepted: March 10, 2013
Published: April 8, 2013

Citation
Jessica Conry, Reeta Vyas, and Surendra Singh, "Polarization of orbital angular momentum carrying laser beams," J. Opt. Soc. Am. A 30, 821-824 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-5-821


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1999), Vol. 39, pp. 291–372.
  2. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). [CrossRef]
  3. V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003). [CrossRef]
  4. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pasko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004). [CrossRef]
  5. J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using lights orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010). [CrossRef]
  6. S. Straupe and S. Kulik, “Quantum optics the quest for higher dimensionality,” Nat. Photonics 4, 585–586 (2010). [CrossRef]
  7. M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975). [CrossRef]
  8. L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979). [CrossRef]
  9. J. D. Jackson, Classical Electrodynamics (Wiley, 1999), Problem 7.28.
  10. W. L. Erikson and S. Singh, “Polarization properties of Maxwell-Gaussian laser beams,” Phys. Rev. E 49, 5778–5786 (1994). [CrossRef]
  11. J. W. Moore, R. Vyas, and S. Singh, “The hidden side of a laser beam,” in Proceedings of the John Hall Symposium, J. C. Bergquist, S. A. Diddams, L. Hollberg, C. Oates, J. Ye, and L. Kaleth, eds. (World Scientific, 2006), pp. 97–99.
  12. R. Vyas and S. Singh, “Cross-polarization of Maxwell-Gaussian laser beams with orbital and spin angular momentum,” in Coherence and Quantum Optics IX, N. P. Bigelow, J. H. Eberly, and C. R. Stroud, eds. (AIP, 2008), pp. 344–345.
  13. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966). [CrossRef]
  14. M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chavez-Cerda, “Parabolic nondiffracting optical wavefields,” Opt. Lett. 29, 44–46 (2004). [CrossRef]
  15. M. A. Bandres and J. C. Gutiérrez-Vega, “Ince-Gaussian beams,” Opt. Lett. 29, 144–146 (2004). [CrossRef]
  16. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef]
  17. J. Vickers, M. Burch, R. Vyas, and S. Singh, “Phase and interference properties of optical vortex beams,” J. Opt. Soc. Am. A 25, 823–827 (2008). [CrossRef]
  18. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). [CrossRef]
  19. J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6, 71 (2004). [CrossRef]
  20. G. Kihara Rurimo, M. Schardt, S. Quabis, S. Malzer, Ch. Dotzler, A. Winkler, G. Leuchs, G. H. Dohler, D. Driscoll, M. Hanson, A. C. Gossard, and S. F. Pereira, “Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam,” J. Appl. Phys. 100, 023112 (2006). [CrossRef]
  21. B. Hao and J. Leger, “Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam,” Opt. Express 15, 3550–3556 (2007). [CrossRef]
  22. J. Conry, R. Vyas, and S. Singh, “Cross-polarization of linearly polarized Hermite–Gauss laser beams,” J. Opt. Soc. Am. A 29, 579–584 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited