OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 891–897

Optical activity caused by torsion stresses: the case of NaBi(MoO4)2 crystals

Yuriy Vasylkiv, Oleksiy Kvasnyuk, Yaroslav Shopa, and Rostyslav Vlokh  »View Author Affiliations

JOSA A, Vol. 30, Issue 5, pp. 891-897 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (497 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have found that torsion mechanical stresses induce the optical rotation effect in centrosymmetric NaBi(MoO4)2 crystals. We have suggested a description of the effect on the basis of nonlocal linear elasticity theory. It has been shown that the induced optical gyration is proportional to the stress gradient appearing due to the torsion.

© 2013 Optical Society of America

OCIS Codes
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Physical Optics

Original Manuscript: January 10, 2013
Revised Manuscript: March 14, 2013
Manuscript Accepted: March 16, 2013
Published: April 16, 2013

Yuriy Vasylkiv, Oleksiy Kvasnyuk, Yaroslav Shopa, and Rostyslav Vlokh, "Optical activity caused by torsion stresses: the case of NaBi(MoO4)2 crystals," J. Opt. Soc. Am. A 30, 891-897 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. J. D. Arago, “Memoire sur une modifcation remarquable qu’eprouvent les rayons lumineux dans leur passage a travers certains corps diaphanes et sur quelques autres nouveaux phenomenes d’optique,” Memoires de la classe des sciences math. et phys. de l’Institut Imperial de France 1, 93–134 (1811).
  2. A. Fresnel, “Memoire sur la double refraction que les rayons lumineux eprouvent en traversant les aiguilles de cristal de roche suivant des directions paralleles a l’axe,” Oeuvres 1, 731–751 (1822).
  3. M. Born, “Uber die natufrliche optische Aktivitat von Flussigkeiten und Gasen,” Phys. Z. 16, 251–258 (1915).
  4. C. W. Oseen, “Uber die Wechselwirkung zwischen zwei elektrischen Dipolen und fiber in Kristallen und Flussigkeiten,” Ann. Phys. 353, 1–56 (1915). [CrossRef]
  5. F. Gray, “The optical activity of liquids and gases,” Phys. Rev. 7, 472–488 (1916). [CrossRef]
  6. V. L. Ginzburg and V. M. Agranovich, “Crystal optics with allowance for spatial dispersion; exciton theory. I,” Sov. Phys. Usp. 5, 323–346 (1962). [CrossRef]
  7. V. L. Ginzburg and V. M. Agranovich, “Crystal optics with allowance for spatial dispersion; exciton theory. II,” Sov. Phys. Usp. 5, 649–660 (1963). [CrossRef]
  8. L. D. Landau and E. M. Lifshitz, Theoretical Physics. Vol. VIII. Electrodynamics of Continuous Media (Nauka, 1982).
  9. K. Aizu, “Reversal in optical rotatory power—‘gyroelectric’ crystals and ‘hypergyroelectric’ crystals,” Phys. Rev. 133, A1584–A1588 (1964). [CrossRef]
  10. I. S. Zheludev, “Axial tensors of the third rank and the physical effects they describe,” Kristallografiya 9, 501–505 (1964). [Sov. Phys. Crystallogr. 9, 418–422 (1965)].
  11. O. G. Vlokh, “Electrooptical activity of quartz crystals,” Ukr. Fiz. Zhurn. 15, 758–762. (1970). [Sov. Phys. Ukr. Fiz. Zhurn. 15, 771–775 (1970)].
  12. O. G. Vlokh, “Electrogyration effects in quartz crystals,” Pisma ZhETF. 13, 118–121 (1971). [Sov. Phys. Pisma. 13, 81–83 (1971)].
  13. O. G. Vlokh and R. O. Vlokh, “The electrogyration effect,” Opt. Photon. News 20, 34–39 (2009). [CrossRef]
  14. K. Aizu, “Ferroelectric transformations of tensorial properties in regular ferroelectrics,” Phys. Rev. 133, A1350–A1359 (1964). [CrossRef]
  15. O. G. Vlokh and T. D. Krushel’nitskaya, “Axial fourth-rank tensors and quadratic electro-gyration,” Kristallografiya 15, 587–589 (1970).
  16. V. S. Lvov, “Optical activity of deformed crystals,” Fiz. Tverd. Tela. 9, 1273–1275 (1967).
  17. H. J. Weber and S. Haussuhl, “Electrogyration and piezogyration in NaClO3,” Acta Crystallogr. A35, 225–232 (1979).
  18. R. Vlokh, M. Kostyrko, and I. Skab, “Principle and application of crystallo-optical effects induced by inhomogeneous deformation,” Jpn. J. Appl. Phys. 37, 5418–5420 (1998). [CrossRef]
  19. R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “Torsion-gyration effect,” Ukr. Fiz. Zhurn. 34, 845–846 (1989).
  20. R. O. Vlokh, M. E. Kostyrko, and I. P. Skab, “Description of gradients of piezo-gyration and piezo-optics caused by twisting and bending,” Crystallogr. Rep. 42, 1011–1013 (1997).
  21. B. V. Bokut and A. N. Serdyukov, “On the theory of optical activity of the inhomogeneous media,” Zh. Prikl. Spektrosk. 20, 677–681 (1974).
  22. B. V. Bokut, A. N. Serdyukov, F. I. Fedorov, and N. A. Khilo, “On the boundary conditions in the electrodynamics of the optically active media,” Kristallografiya 18, 227–233 (1973).
  23. O. S. Kushnir and L. O. Lokot, “The peculiarities of the optical response of dielectric crystals with incommensurate phases,” Fiz. Tverd. Tela 43, 786–790 (2001).
  24. O. S. Kushnir, “Spatial dispersion in incommensurately modulated insulators,” J. Phys.: Condens. Matter. 16, 1245–1267 (2004). [CrossRef]
  25. M. P. Shaskolskaya, Acoustic Crystals (Nauka, 1982).
  26. Yu. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Nauka, 1979).
  27. T. S. Narasimhamurty, Photoelastic and Electro-optic Properties of Crystals (Plenum, 1981).
  28. I. Skab, I. Smaga, V. Savaryn, Yu. Vasylkiv, and R. Vlokh, “Torsion method for measuring piezooptic coefficients,” Cryst. Res. Technol. 46, 23–36 (2011). [CrossRef]
  29. I. Skab, Yu. Vasylkiv, V. Savaryn, and R. Vlokh, “Optical anisotropy induced by torsion stresses in LiNbO3 crystals: appearance of an optical vortex,” J. Opt. Soc. Am. A. 28, 633–640 (2011).
  30. I. Skab, Yu. Vasylkiv, V. Savaryn, and R. Vlokh, “Relations for optical indicatrix parameters in the conditions of crystal torsion,” Ukr. J. Phys. Opt. 11, 193–240 (2010). [CrossRef]
  31. O. G. Vlokh and V. B. Kobylyansky, “Effect of parameters of gyrotropic crystals on the light polarization character,” Ukr. Fiz. Zhurn. 19, 1129–1135 (1974).
  32. A. F. Konstantinova, B. N. Grechushnikov, B. V. Bokut, and E. G. Valyashko, Optical Properties of Crystals (Navuka i Tekhnika, 1995).
  33. http://www.irystyle.com/elent/sbimo.htm .
  34. W. G. Jung, Op Amp Applications Handbook (Elsevier, 2005).
  35. E. Hecht, Optics (Addison–Wesley, 2002).
  36. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).
  37. Yu. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Mir, 1982).
  38. R. D. Mindlin and H. F. Tiersten, “Effects of couple-stresses in linear elasticity,” Arch. Ration. Mech. Anal. 11, 415–448 (1962). [CrossRef]
  39. R. D. Mindlin, “Micro-structure in linear elasticity,” Arch. Ration. Mech. Anal. 16, 51–78 (1964). [CrossRef]
  40. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University, 2000).
  41. W. T. Lee, E. K. H. Salje, and U. Bismayer, “Domain-wall structure and domain-wall strain,” J. Appl. Phys. 93, 9890–9897 (2003). [CrossRef]
  42. C. G. Grentzelou and H. G. Georgiadis, “Uniqueness for plane crack problems in dipolar gradient elasticity and in couple-stress elasticity,” Int. J. Solids Struct. 42, 6226–6244 (2005). [CrossRef]
  43. V. A. Lubarda, “The effects of couple stresses on dislocation strain energy,” Int. J. Solids Struct. 40, 3807–3826 (2003). [CrossRef]
  44. F. Yang, A. C. M. Chong, D. C. C. Lam, and P. Tong, “Couple stress based strain gradient theory for elasticity,” Int. J. Solids Struct. 39, 2731–2743 (2002). [CrossRef]
  45. A. K. Tagantsev, “Pyroelectric, piezoelectric, flexoelectric, and thermal polarization effects in ionic crystals,” Sov. Phys. Usp. 30, 588–603 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited