OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 941–947

Common mode noise rejection properties of amplitude and phase noise in a heterodyne interferometer

Gerald Hechenblaikner  »View Author Affiliations


JOSA A, Vol. 30, Issue 5, pp. 941-947 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000941


View Full Text Article

Enhanced HTML    Acrobat PDF (225 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High precision metrology systems based on heterodyne interferometry can measure the position and attitude of objects to accuracies of picometer and nanorad, respectively. A frequently found feature of the general system design is the subtraction of a reference phase from the phase of the position interferometer, which suppresses low frequency common mode amplitude and phase fluctuations occurring in volatile optical path sections shared by both the position and reference interferometer. Spectral components of the noise at frequencies around or higher than the heterodyne frequency, however, are generally transmitted into the measurement band and may limit the measurement accuracy. Detailed analytical calculations complemented with Monte Carlo simulations show that high frequency noise components may also be entirely suppressed, depending on the relative difference of measurement and reference phase, which may be exploited by corresponding design provisions. While these results are applicable to any heterodyne interferometer with certain design characteristics, specific calculations and related discussions are given for the example of the optical metrology system of the LISA Pathfinder mission to space.

© 2013 Optical Society of America

OCIS Codes
(040.2840) Detectors : Heterodyne
(100.5070) Image processing : Phase retrieval
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: January 15, 2013
Revised Manuscript: March 8, 2013
Manuscript Accepted: March 15, 2013
Published: April 19, 2013

Citation
Gerald Hechenblaikner, "Common mode noise rejection properties of amplitude and phase noise in a heterodyne interferometer," J. Opt. Soc. Am. A 30, 941-947 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-5-941


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Hahn, M. Weilert, X. Wang, and R. Goullioud, “A heterodyne interferometer for angle metrology,” Rev. Sci. Instrum. 81, 045103 (2010). [CrossRef]
  2. H. Müller, S. wey Chiow, Q. Long, C. Vo, and S. Chu, “Active sub-rayleigh alignment of parallel or antiparallel laser beams,” Opt. Lett. 30, 3323–3325 (2005). [CrossRef]
  3. Y. Niwa, K. Arai, A. Ueda, M. Sakagami, N. Gouda, Y. Kobayashi, Y. Yamada, and T. Yano, “Long-term stabilization of a heterodyne metrology interferometer down to a noise level of 20 pm over an hour,” Appl. Opt. 48, 6105–6110 (2009). [CrossRef]
  4. J. Cordero, T. Heinrich, T. Schuldt, M. Gohlke, S. Lucarelli, D. Weise, U. Johann, and C. Braxmaier, “Interferometry based high-precision dilatometry for dimensional characterization of highly stable materials,” Meas. Sci. Technol. 20, 095301 (2009). [CrossRef]
  5. H.-I. Kim, J.-S. Yoon, H.-B. Kim, and J.-H. Han, “Measurement of the thermal expansion of space structures using fiber bragg grating sensors and displacement measuring interferometers,” Meas. Sci. Technol. 21, 085704 (2010). [CrossRef]
  6. P. G. Halverson and R. E. Spero, “Signal processing and testing of displacement metrology gauges with picometre-scale cyclic nonlinearity,” J. Opt. A 4, S304 (2002). [CrossRef]
  7. R. Goullioud, T.-P. J. Shen, and J. h. Catanzarite, “Sim narrow- and wide-angle astrometric demonstration on the mam testbed,” Proc. SPIE 5491, 965–978 (2004). [CrossRef]
  8. M. Shao and B. Nemati, “Sub-microarcsecond astrometry with sim-lite: a testbed-based performance assessment,” Publications of the Astronomical Society of the Pacific 121, 41–44 (2009). [CrossRef]
  9. G. Heinzel, C. Braxmaier, R. Schilling, A. Rüdiger, D. Robertson, M. te Plate, V. Wand, K. Arai, U. Johann, and K. Danzmann, “Interferometry for the lisa technology package (ltp) aboard smart-2,” Classical Quantum Gravity 20, S153 (2003). [CrossRef]
  10. G. Hechenblaikner, V. Wand, M. Kersten, K. Danzmann, A. Garcia, G. Heinzel, M. Nofrarias, and F. Steier, “Digital laser frequency control and phase-stabilization loops in a high precision space-borne metrology system,” IEEE J. Quantum Electron. 47, 651–660 (2011). [CrossRef]
  11. H. Audley, K. Danzmann, A. G. Marn, G. Heinzel, A. Monsky, M. Nofrarias, F. Steier, D. Gerardi, R. Gerndt, G. Hechenblaikner, U. Johann, P. Luetzow-Wentzky, V. Wand, F. Antonucci, M. Armano, G. Auger, M. Benedetti, P. Binetruy, C. Boatella, J. Bogenstahl, D. Bortoluzzi, P. Bosetti, M. Caleno, A. Cavalleri, M. Cesa, M. Chmeissani, G. Ciani, A. Conchillo, G. Congedo, I. Cristofolini, M. Cruise, F. D. Marchi, M. Diaz-Aguilo, I. Diepholz, G. Dixon, R. Dolesi, J. Fauste, L. Ferraioli, D. Fertin, W. Fichter, E. Fitzsimons, M. Freschi, C. G. Marirrodriga, L. Gesa, F. Gibert, D. Giardini, C. Grimani, A. Grynagier, B. Guillaume, F. Guzmn, I. Harrison, M. Hewitson, D. Hollington, J. Hough, D. Hoyland, M. Hueller, J. Huesler, O. Jeannin, O. Jennrich, P. Jetzer, B. Johlander, C. Killow, X. Llamas, I. Lloro, A. Lobo, R. Maarschalkerweerd, S. Madden, D. Mance, I. Mateos, P. W. McNamara, J. Mendes, E. Mitchell, D. Nicolini, D. Nicolodi, F. Pedersen, M. Perreur-Lloyd, A. Perreca, E. Plagnol, P. Prat, G. D. Racca, B. Rais, J. Ramos-Castro, J. Reiche, J. A. R. Perez, D. Robertson, H. Rozemeijer, J. Sanjuan, M. Schulte, D. Shaul, L. Stagnaro, S. Strandmoe, T. J. Sumner, A. Taylor, D. Texier, C. Trenkel, D. Tombolato, S. Vitale, G. Wanner, H. Ward, S. Waschke, P. Wass, W. J. Weber, and P. Zweifel, “The lisa pathfinder interferometry hardware and system testing,” Classical Quantum Gravity 28, 094003 (2011). [CrossRef]
  12. M. Tanaka, T. Yamagami, and K. Nakayama, “Linear interpolation of periodic error in a heterodyne laser interferometer at subnanometer levels [dimension measurement],” IEEE Trans. Instrum. Meas. 38, 552–554 (1989). [CrossRef]
  13. F. Zhao, J. E. Logan, S. B. Shaklan, and M. Shao, “Common-path multichannel heterodyne laser interferometer for subnanometer surface metrology,” Proc. SPIE 3740, 642–645 (1999). 
  14. J. Lawall and E. Kessler, “Michelson interferometry with 10 pm accuracy,” Rev. Sci. Instrum. 71, 2669–2676 (2000). [CrossRef]
  15. C. Wu, S. Lin, and J. Fu, “Heterodyne interferometer with two spatial-separated polarization beams for nanometrology,” Opt. Quantum Electron. 34, 1267–1276 (2002). [CrossRef]
  16. S. Vitale, “Space-time metrology for the lisa gravitational wave observatory, and its demonstration on lisa pathfinder,” Space Sci. Rev. 148, 441–454 (2009). [CrossRef]
  17. T. Bell, “Gravitational astronomy: hearing the heavens,” Nat. News 452, 18–21 (2008). [CrossRef]
  18. V. Wand, J. Bogenstahl, C. Braxmaier, K. Danzmann, A. Garcia, F. Guzmán, G. Heinzel, J. Hough, O. Jennrich, C. Killow, D. Robertson, Z. Sodnik, F. Steier, and H. Ward, “Noise sources in the ltp heterodyne interferometer,” Classical Quantum Gravity 23, S159 (2006). [CrossRef]
  19. E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Classical Quantum Gravity 22, S257 (2005). [CrossRef]
  20. N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol. 4, 907 (1999). [CrossRef]
  21. N. Oldham, J. Kramar, P. Hetrick, and E. Teague, “Electronic limitations in phase meters for heterodyne interferometry,” Precis. Eng. 15, 173–179 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited