OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1146–1154

Small animal optical diffusion tomography with targeted fluorescence

Vaibhav Gaind, Hsiao-Rho Tsai, Kevin J. Webb, Venkatesh Chelvam, and Philip S. Low  »View Author Affiliations


JOSA A, Vol. 30, Issue 6, pp. 1146-1154 (2013)
http://dx.doi.org/10.1364/JOSAA.30.001146


View Full Text Article

Enhanced HTML    Acrobat PDF (1634 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Despite the broad impact in medicine that optics can bring, thus far practical approaches are limited to weak scatter or near-surface monitoring. We show a method that utilizes a laser topography scan and a diffusion equation model to describe the photon transport, together with a multiresolution unstructured grid solution to the nonlinear optimization measurement functional, that overcomes these limitations. We conclude that it is possible to achieve whole body optical imaging with a resolution suitable for finding cancer nodules within an organ during surgery, with the aid of a targeted imaging agent.

© 2013 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(290.1990) Scattering : Diffusion
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Spectroscopy

History
Original Manuscript: November 21, 2012
Revised Manuscript: February 12, 2013
Manuscript Accepted: March 22, 2013
Published: May 15, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Vaibhav Gaind, Hsiao-Rho Tsai, Kevin J. Webb, Venkatesh Chelvam, and Philip S. Low, "Small animal optical diffusion tomography with targeted fluorescence," J. Opt. Soc. Am. A 30, 1146-1154 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-6-1146


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef]
  2. T. A. Aguilera, E. S. Olson, M. M. Timmers, T. Jiang, and R. Y. Tsien, “Systemic in vivo distribution of activatable cell penetrating peptides is superior to that of cell penetrating peptides,” Integr. Biol. 1, 371–381 (2009). [CrossRef]
  3. Q. T. Nguyen, E. S. Olson, T. A. Aguilera, T. Jiang, M. Scadeng, L. G. Ellies, and R. Y. Tsien, “Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival,” Proc. Natl. Acad. Sci. USA 107, 4317–4322 (2010). [CrossRef]
  4. P. S. Low, W. A. Henne, and D. D. Doorneweerd, “Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases,” Acc. Chem. Res. 41, 120–129 (2008). [CrossRef]
  5. G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescent imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17, 1315–1319 (2011). [CrossRef]
  6. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef]
  7. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  8. J. C. Ye, K. J. Webb, C. A. Bouman, and R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999). [CrossRef]
  9. Y. Lu, B. Zhu, C. Darne, I.-C. Tan, J. C. Rasmussen, and E. M. Sevick-Muraca, “Improvement of fluorescence-enhanced optical tomography with improved optical filtering and accurate model-based reconstruction algorithms,” J. Biomed. Opt. 16, 126002 (2011). [CrossRef]
  10. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003). [CrossRef]
  11. A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. Am. A 21, 1035–1049 (2004). [CrossRef]
  12. S. V. Patwardhan, S. R. Bloch, S. Achilefu, and J. P. Culver, “Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice,” Opt. Express 13, 2564–2577 (2005). [CrossRef]
  13. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32, 382–384 (2007). [CrossRef]
  14. X. Zhang, C. T. Badea, and G. A. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt. 14, 064010 (2009). [CrossRef]
  15. A. T. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imaging 27, 1152–1163 (2008). [CrossRef]
  16. R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009). [CrossRef]
  17. Commercial systems like the SoftScan from Advanced Research Technologies Inc., Canada, immerse the breast in a scattering emulsion.
  18. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Österberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001). [CrossRef]
  19. A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, and R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002). [CrossRef]
  20. J. C. Ye, C. A. Bouman, K. J. Webb, and R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001). [CrossRef]
  21. S. Oh, A. B. Milstein, C. A. Bouman, and K. J. Webb, “A general framework for nonlinear multigrid inversion,” IEEE Trans. Image Process. 14, 125–140 (2005). [CrossRef]
  22. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993). [CrossRef]
  23. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  24. J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788–2797 (1998). [CrossRef]
  25. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-pet (opet) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005). [CrossRef]
  26. V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters,” J. Opt. Soc. Am. A 26, 1805–1813 (2009). [CrossRef]
  27. V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep tissue imaging of intramolecular fluorescence resonance energy transfer parameters,” Opt. Lett. 35, 1314–1316 (2010). [CrossRef]
  28. B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information,” Opt. Lett. 23, 1716–1718 (1998). [CrossRef]
  29. X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739–1741 (2003). [CrossRef]
  30. T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenze,” Ann. Phys. 437, 55–75 (1948). [CrossRef]
  31. V. Ratner, M. Sinev, and E. Haas, “Determination of intramolecular distance distribution during protein folding on the millisecond timescale,” J. Mol. Biol. 299, 1363–1371 (2000). [CrossRef]
  32. E. Haas, “The study of protein folding and dynamics by determination of intramolecular distance distributions and their fluctuations using ensemble and single-molecule fret measurement,” Chem. Phys. Chem. 6, 858–870 (2005). [CrossRef]
  33. C. M. Dobson, “Protein folding and misfolding,” Nature 426, 884–890 (2003). [CrossRef]
  34. A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature 388, 881–887 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited