OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1205–1212

Electromagnetic energy within single-resonance chiral metamaterial spheres

Tiago J. Arruda, Felipe A. Pinheiro, and Alexandre S. Martinez  »View Author Affiliations


JOSA A, Vol. 30, Issue 6, pp. 1205-1212 (2013)
http://dx.doi.org/10.1364/JOSAA.30.001205


View Full Text Article

Enhanced HTML    Acrobat PDF (534 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We derive an exact expression for the time-averaged electromagnetic (EM) energy inside a chiral dispersive sphere irradiated by a plane wave. The dispersion relations correspond to a chiral metamaterial consisting of uncoupled single-resonance helical resonators. Using a field decomposition scheme and a general expression for the EM energy density in bianisotropic media, we calculate the Lorenz–Mie solution for the internal fields in a medium that is simultaneously magnetic and chiral. We also obtain an explicit analytical relation between the internal EM energy and the absorption cross section. This result is applied to demonstrate that strong chirality leads to an off-resonance field enhancement within weakly absorbing spheres.

© 2013 Optical Society of America

OCIS Codes
(290.4020) Scattering : Mie theory
(160.1585) Materials : Chiral media
(160.3918) Materials : Metamaterials
(290.5825) Scattering : Scattering theory

ToC Category:
Materials

History
Original Manuscript: March 4, 2013
Revised Manuscript: May 4, 2013
Manuscript Accepted: May 11, 2013
Published: May 28, 2013

Citation
Tiago J. Arruda, Felipe A. Pinheiro, and Alexandre S. Martinez, "Electromagnetic energy within single-resonance chiral metamaterial spheres," J. Opt. Soc. Am. A 30, 1205-1212 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-6-1205


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef]
  2. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004). [CrossRef]
  3. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005). [CrossRef]
  4. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15, 3333–3341 (2007). [CrossRef]
  5. J. B. Pendry, D. Shurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  6. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef]
  7. N. Zheludev and N. Papasimakis, “Metamaterial-induced transparency: sharp Fano resonances and slow light,” Opt. Photon. News 20(10), 22–27 (2009). [CrossRef]
  8. J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004). [CrossRef]
  9. B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A 11, 114003 (2009). [CrossRef]
  10. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005). [CrossRef]
  11. D. R. Smith, P. Kolinko, and D. Schurig, “Negative refraction in indefinite media,” J. Opt. Soc. Am. B 21, 1032–1043 (2004). [CrossRef]
  12. V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005). [CrossRef]
  13. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nano photonics using hyperbolic metamaterials,” J. Opt. 14, 063001 (2012). [CrossRef]
  14. B. A. van Tiggelen and A. Lagendijk, “Resonant multiple scattering of light,” Phys. Rep. 270, 143–215 (1996). [CrossRef]
  15. F. A. Pinheiro, “Statistics of quality factors in three-dimensional disordered magneto-optical systems and its applications to random lasers,” Phys. Rev. A 78, 023812 (2008). [CrossRef]
  16. R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A 3, 233–245 (1970). [CrossRef]
  17. R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A 299, 309–312 (2002). [CrossRef]
  18. S. A. Tretyakov, “Electromagnetic field energy density in artificial microwave materials with strong dispersion and loss,” Phys. Lett. A 343, 231–237 (2005). [CrossRef]
  19. A. D. Boardman and K. Marinov, “Electromagnetic energy in a dispersive metamaterial,” Phys. Rev. B 73, 165110 (2006). [CrossRef]
  20. P. G. Luan, “Power loss and electromagnetic energy density in a dispersive metamaterial medium,” Phys. Rev. E 80, 046601 (2009). [CrossRef]
  21. T. J. Arruda, F. A. Pinheiro, and A. S. Martinez, “Electromagnetic energy within coated spheres containing dispersive metamaterials,” J. Opt. 14, 065101 (2012). [CrossRef]
  22. P. G. Luan, Y. T. Wang, S. Zhang, and X. Zhang, “Electromagnetic energy density in a single-resonance chiral metamaterial,” Opt. Lett. 36, 675–677 (2011). [CrossRef]
  23. A. E. Miroshnichenko, “Off-resonance field enhancement by spherical nanoshells,” Phys. Rev. A 81, 053818 (2010). [CrossRef]
  24. T. J. Arruda, A. S. Martinez, and F. A. Pinheiro, “Unconventional Fano effect and off-resonance field enhancement in plasmonic coated spheres,” Phys. Rev. A 87, 043841 (2013). [CrossRef]
  25. C. F. Bohren, “Light scattering by an optically active sphere,” Chem. Phys. Lett. 29, 458–462 (1974). [CrossRef]
  26. F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “New effects in light scattering in disordered media and coherent backscattering cone: system of magnetic particles,” Phys. Rev. Lett. 84, 1435–1438 (2000). [CrossRef]
  27. F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “Vanishing of energy transport velocity and diffusion constant of electromagnetic waves in disordered magnetic media,” Phys. Rev. Lett. 85, 5563–5566 (2000). [CrossRef]
  28. E. U. Condon, “Theories of optical rotatory power,” Rev. Mod. Phys. 9, 432–457 (1937). [CrossRef]
  29. M. P. Silverman, “Reflection and refraction at the surface of a chiral medium: comparison of gyrotropic constitutive relations invariant or noninvariant under a duality transformation,” J. Opt. Soc. Am. A 3, 830–837 (1986). [CrossRef]
  30. R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt. Express 18, 14553–14567 (2010). [CrossRef]
  31. A. Serdyukov, I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications (Gordon and Breach Science, 2001).
  32. J. Lekner, “Optical properties of isotropic chiral media,” Pure Appl. Opt. 5, 417–443 (1996). [CrossRef]
  33. A. Lakhtakia, V. V. Varadan, and V. K. Varadan, “Field equations, Huygens’s principle, integral equations, and theorems for radiation and scattering of electromagnetic waves in isotropic chiral media,” J. Opt. Soc. Am. A 5, 175–184 (1988). [CrossRef]
  34. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  35. A. Bott and W. Zdunkowski, “Electromagnetic energy within dielectric spheres,” J. Opt. Soc. Am. A 4, 1361–1365 (1987). [CrossRef]
  36. T. J. Arruda and A. S. Martinez, “Electromagnetic energy within a magnetic sphere,” J. Opt. Soc. Am. A 27, 992–1001 (2010). [CrossRef]
  37. T. J. Arruda and A. S. Martinez, “Electromagnetic energy within a magnetic infinite cylinder and scattering properties for oblique incidence,” J. Opt. Soc. Am. A 27, 1679–1687 (2010). [CrossRef]
  38. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University, 1958).
  39. R. Ruppin, “Electric and magnetic energies within dispersive metamaterial spheres,” J. Opt. 13, 095101 (2011). [CrossRef]
  40. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited