OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1213–1222

Double Zernike expansion of the optical aberration function from its power series expansion

Joseph J. M. Braat and Augustus J. E. M. Janssen  »View Author Affiliations


JOSA A, Vol. 30, Issue 6, pp. 1213-1222 (2013)
http://dx.doi.org/10.1364/JOSAA.30.001213


View Full Text Article

Enhanced HTML    Acrobat PDF (294 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Various authors have presented the aberration function of an optical system as a power series expansion with respect to the ray coordinates in the exit pupil and the coordinates of the intersection point with the image field of the optical system. In practical applications, for reasons of efficiency and accuracy, an expansion with the aid of orthogonal polynomials is preferred for which, since the 1980s, orthogonal Zernike polynomials have become the reference. In the literature, some conversion schemes of power series coefficients to coefficients for the corresponding Zernike polynomial expansion have been given. In this paper we present an analytic solution for the conversion problem from a power series expansion in three or four dimensions to a double Zernike polynomial expansion. The solution pertains to a general optical system with four independent pupil and field coordinates and to a system with rotational symmetry in which case three independent coordinate combinations have to be considered. The conversion of the coefficients is analytically in closed form and the result is independent of a specific sampling scheme or sampling density as this is the case for the commonly used least squares fitting techniques. Computation schemes are given that allow the evaluation of coefficients of arbitrarily high order in pupil and field coordinates.

© 2013 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(110.0110) Imaging systems : Imaging systems
(080.1005) Geometric optics : Aberration expansions

History
Original Manuscript: April 16, 2013
Manuscript Accepted: April 23, 2013
Published: May 28, 2013

Citation
Joseph J. M. Braat and Augustus J. E. M. Janssen, "Double Zernike expansion of the optical aberration function from its power series expansion," J. Opt. Soc. Am. A 30, 1213-1222 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-6-1213


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Seidel, “Über die Entwicklung der Glieder 3ter Ordnung welche den Weg eines ausserhalb der Ebene der Axe gelegene Lichtstrahles durch ein System brechender Medien bestimmen,” Astr. Nach. 43, 289–304 (1856).
  2. K. Schwarzschild, “Untersuchungen zur geometrischen Optik, I-II,” Abh. Königl. Ges. Wiss. Göttingen, Math. Phys. Kl, Neue Folge 4, 1–54 (1905).
  3. F. Wachendorf, “Bestimmung der Bildfehler fünfter Ordnung in zentrierten optischen Systemen,” Optik (Jena) 5, 80–122 (1949).
  4. H. A. Buchdahl, Aberrations of Optical Systems (Dover Publications, 1968).
  5. M. R. Rimmer, “Optical aberration coefficients,” Ph.D. thesis (University of Rochester, 1963).
  6. T. B. Andersen, “Automatic computation of optical aberration coefficients,” Appl. Opt. 19, 3800–3816 (1980). [CrossRef]
  7. F. Bociort, T. B. Andersen, and L. H. J. F. Beckmann, “High-order optical aberration coefficients: extension to finite objects and to telecentricity in object space,” Appl. Opt. 47, 5691–5700 (2008). [CrossRef]
  8. J. L. Synge, Geometrical Optics, An Introduction to Hamilton’s Method, Cambridge Tracts in Mathematics and Mathematical Physics (Cambridge University, 1937).
  9. T. Smith, “The changes in aberrations when the object and stop are moved,” Trans. Opt. Soc. 23, 139–153 (1922). [CrossRef]
  10. G. C. Steward, “Aberration diffraction effects,” Phil. Trans. R. Soc. A 225, 131–198 (1926). [CrossRef]
  11. C. Carathéodory, “Geometrische Optik,” in Ergebnisse der Mathematik und ihrer Grenzgebiete (Springer-Verlag, 1937), Vol. 4, no. 5.
  12. C. H. F. Velzel and J. L. F. de Meijere, “Characteristic functions and the aberrations of symmetric optical systems. I. Transverse aberrations when the eikonal is given,” J. Opt. Soc. Am. A 5, 246–250 (1988). [CrossRef]
  13. C. H. F. Velzel and J. L. F. de Meijere, “Characteristic functions and the aberrations of symmetric optical systems. II. Addition of aberrations,” J. Opt. Soc. Am. A 5, 251–256 (1988). [CrossRef]
  14. C. H. F. Velzel and J. L. F. de Meijere, “Characteristic functions and the aberrations of symmetric optical systems. III. Calculation of eikonal coefficients,” J. Opt. Soc. Am. A 5, 1237–1243 (1988). [CrossRef]
  15. H. H. Hopkins, Wave Theory of Aberrations (Clarendon Press, 1950).
  16. A. E. Conrady, Applied Optics and Optical Design [Dover Publications, Part I (1957), Part II (1960)].
  17. J. Sasián, “Theory of sixth-order wave aberrations,” Appl. Opt. 49, D69–D95 (2010). [CrossRef]
  18. R. K. Tyson, “Conversion of Zernike aberration coefficients to Seidel and higher-order power-series aberration coefficients,” Opt. Lett. 7, 262–264 (1982). [CrossRef]
  19. G. Conforti, “Zernike aberration coefficients from Seidel and higher-order power-series coefficients,” Opt. Lett. 8, 407–408 (1983). [CrossRef]
  20. I. W. Kwee and J. J. M. Braat, “Double Zernike expansion of the optical aberration function,” Pure Appl. Opt. 2, 21–32 (1993). [CrossRef]
  21. I. Agurok, “Double expansion of wavefront deformation in Zernike polynomials over the pupil and field-of-view of optical systems: lens design, testing, and alignment,” Proc. SPIE 3430, 80–87 (1998). [CrossRef]
  22. T. Matsuyama and T. Ujike, “Orthogonal aberration functions for microlithographic optics,” Opt. Rev. 11, 199–207 (2004). [CrossRef]
  23. K. P. Thompson, “Aberration fields in tilted and decentered optical systems,” Ph.D. thesis (The University of Arizona, 1980).
  24. I. Agurok, “Aberrations of perturbed and unobscured optical systems,” Proc. SPIE 3779, 166–177 (1999). [CrossRef]
  25. K. P. Thompson, “Description of the third-order optical aberrations of near-circular pupil optical systems without symmetry,” J. Opt. Soc. Am. A 22, 1389–1401 (2005). [CrossRef]
  26. K. P. Thompson, “Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: spherical aberration,” J. Opt. Soc. Am. A 26, 1090–1100 (2009). [CrossRef]
  27. T. Matsuzawa, “Image field distribution model of wavefront aberration and models of distortion and field curvature,” J. Opt. Soc. Am. A 28, 96–110 (2011). [CrossRef]
  28. R. W. Gray, C. Dunn, K. P. Thompson, and J. P. Rolland, “An analytic expression for the field dependence of Zernike polynomials in rotationally symmetric optical systems,” Opt. Express 20, 16436–16449 (2012). [CrossRef]
  29. B. R. A. Nijboer, “The diffraction theory of aberrations,” Ph.D. thesis (Rijksuniversiteit Groningen, 1942), J. B. Wolters, Groningen, downloadable from www.nijboerzernike.nl .
  30. A. J. E. M. Janssen and P. Dirksen, “Computing Zernike polynomials of arbitrary degree using the discrete Fourier transform,” J. Eur. Opt. Soc. Rapid Pub. 2, 07012 (2007). [CrossRef]
  31. V. N. Mahajan, Optical Imaging and Aberrations: Part I, Ray Geometrical Optics, (SPIE Press, 1998), p. 156.
  32. J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, and A. S. van de Nes, “Extended Nijboer–Zernike representation of the field in the focal region of an aberrated high-aperture optical system,” J. Opt. Soc. Am. A 20, 2281–2292 (2003). [CrossRef]
  33. M. Born and E. Wolf, Principles of Optics, 7th expanded ed. (Cambridge University, 1999), pp. 909–910.
  34. A. J. E. M. Janssen, “Extended Nijboer–Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19, 849–857 (2002). [CrossRef]
  35. J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Assessment of an extended Nijboer–Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19, 858–870 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited