OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1281–1290

Destructive impact of imperfect beam collimation in extraordinary optical transmission

Aaron D. Jackson, Da Huang, Daniel J. Gauthier, and Stephanos Venakides  »View Author Affiliations

JOSA A, Vol. 30, Issue 6, pp. 1281-1290 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (704 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the difference between analytic predictions, numerical simulations, and experiments measuring the transmission of energy through subwavelength, periodically arranged holes in a metal film. At normal incidence, theory predicts a sharp transmission minimum when the wavelength is equal to the periodicity, and sharp transmission maxima at one or more nearby wavelengths. In experiments, the sharpest maximum from the theory is not observed, while the others appear less sharp. In numerical simulations using commercial electromagnetic field solvers, we find that the sharpest maximum appears and approaches our predictions as the computational resources are increased. To determine possible origins of the destruction of the sharp maximum, we incorporate additional features in our model. Incorporating imperfect conductivity and imperfect periodicity in our model leaves the sharp maximum intact. Imperfect collimation, on the other hand, incorporated into the model causes the destruction of the sharp maximum as happens in experiments. We provide analytic support through an asymptotic calculation for both the existence of the sharp maximum and the destructive impact of imperfect collimation.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(310.2790) Thin films : Guided waves
(050.6624) Diffraction and gratings : Subwavelength structures
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

Original Manuscript: January 29, 2013
Revised Manuscript: May 12, 2013
Manuscript Accepted: May 12, 2013
Published: May 31, 2013

Aaron D. Jackson, Da Huang, Daniel J. Gauthier, and Stephanos Venakides, "Destructive impact of imperfect beam collimation in extraordinary optical transmission," J. Opt. Soc. Am. A 30, 1281-1290 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007). [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  3. L. Martín-Moreno and F. J. García-Vidal, “Minimal model for optical transmission through holey metal films,” J. Phys. Condens. Matter 20, 304214 (2008). [CrossRef]
  4. A. Y. Nikitin, D. Zueco, F. J. García-Vidal, and L. Martín-Moreno, “Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness,” Phys. Rev. B 78, 165429 (2008). [CrossRef]
  5. F. Medina, F. Mesa, and R. Marques, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Tech. 56, 3108–3120 (2008). [CrossRef]
  6. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001). [CrossRef]
  7. F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16, 9571–9579 (2008). [CrossRef]
  8. J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Hurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306 (2003). [CrossRef]
  9. H. Cao and A. Nahata, “Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures,” Opt. Express 12, 3664–3672 (2004). [CrossRef]
  10. Z. Tian, R. Singh, J. Han, J. Gu, Q. Xing, J. Wu, and W. Zhang, “Terahertz superconducting plasmonic hole array,” Opt. Lett. 35, 3586–3588 (2010). [CrossRef]
  11. F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742–2774 (2004). [CrossRef]
  12. B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: surface electric field measurements,” Appl. Phys. Lett. 89, 131917 (2006). [CrossRef]
  13. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004). [CrossRef]
  14. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002). [CrossRef]
  15. C. C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microw. Theory Tech. 21, 1–6 (1973). [CrossRef]
  16. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
  17. T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, and H. Giessen, “Matched coordinates and adaptive spatial resolution in the Fourier modal method,” Opt. Express 17, 8051–8061 (2009). [CrossRef]
  18. T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A 24, 2758–2767 (1997).
  19. R. Antos, “Fourier factorization with complex polarization bases in modeling optics of discontinuous bi-periodic structures,” Opt. Express 17, 7269–7274 (2009). [CrossRef]
  20. H. Liu and P. Lalanne, “Comprehensive microscopic model of the extraorginary optical transmission,” J. Opt. Soc. Am. A 27, 2542–2550 (2010). [CrossRef]
  21. S. Venakides and S. P. Shipman, “Resonant transmission near nonrobust periodic slab modes,” Phys. Rev. E 71, 026611 (2005). [CrossRef]
  22. F. J. García-Vidal, L. Martín-Moreno, Esteban Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006). [CrossRef]
  23. L. Martín-Moreno and F. J. García-Vidal, “Optical transmission through circular hole arrays in optically thick metal films,” Opt. Express 12, 3619–3628 (2004). [CrossRef]
  24. E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am. 51, 491–498 (1961). [CrossRef]
  25. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer, 1983), pp. 248–259.
  26. S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77, 075401 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited