Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optimization of planar self-collimating photonic crystals

Not Accessible

Your library or personal account may give you access

Abstract

Self-collimation in photonic crystals has received a lot of attention in the literature, partly due to recent interest in silicon photonics, yet no performance metrics have been proposed. This paper proposes a figure of merit (FOM) for self-collimation and outlines a methodical approach for calculating it. Performance metrics include bandwidth, angular acceptance, strength, and an overall FOM. Two key contributions of this work include the performance metrics and identifying that the optimum frequency for self-collimation is not at the inflection point. The FOM is used to optimize a planar photonic crystal composed of a square array of cylinders. Conclusions are drawn about how the refractive indices and fill fraction of the lattice impact each of the performance metrics. The optimization is demonstrated by simulating two spatially variant self-collimating photonic crystals, where one has a high FOM and the other has a low FOM. This work gives optical designers tremendous insight into how to design and optimize robust self-collimating photonic crystals, which promises many applications in silicon photonics and integrated optics.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Independent control of phase and power in spatially variant self-collimating photonic crystals

Jesus J. Gutierrez, Noel P. Martinez, and Raymond C. Rumpf
J. Opt. Soc. Am. A 36(9) 1534-1539 (2019)

Efficient excitation of self-collimated beams and single Bloch modes in planar photonic crystals

Jeremy Witzens and Axel Scherer
J. Opt. Soc. Am. A 20(5) 935-940 (2003)

Analysis of splitters for self-collimated beams in planar photonic crystals

David M. Pustai, Shouyuan Shi, Caihua Chen, Ahmed Sharkawy, and Dennis W. Prather
Opt. Express 12(9) 1823-1831 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (36)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved