OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 7 — Jul. 1, 2013
  • pp: 1305–1309

Coherent backscattering enhancement in refracting media: diffusion approximation

Ya. A. Ilyushin  »View Author Affiliations


JOSA A, Vol. 30, Issue 7, pp. 1305-1309 (2013)
http://dx.doi.org/10.1364/JOSAA.30.001305


View Full Text Article

Enhanced HTML    Acrobat PDF (291 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The weak localization (coherent backscattering enhancement) phenomenon in media with graded refraction index is investigated within the diffusion approximation. The obtained analytic results are compared with numerical solutions by finite-difference and Monte Carlo calculations.

© 2013 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(290.1350) Scattering : Backscattering

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: February 22, 2013
Revised Manuscript: April 9, 2013
Manuscript Accepted: May 15, 2013
Published: June 5, 2013

Citation
Ya. A. Ilyushin, "Coherent backscattering enhancement in refracting media: diffusion approximation," J. Opt. Soc. Am. A 30, 1305-1309 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-7-1305


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Tsang and A. Ishimaru, “Backscattering enhancement of random discrete scatterers,” J. Opt. Soc. Am. A 1, 836–839 (1984). [CrossRef]
  2. E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: analysis of the peak line shape,” Phys. Rev. Lett. 56, 1471–1474 (1986). [CrossRef]
  3. B. Hapke, “Coherent backscatter and the radar characteristics of outer planet satellites,” Icarus 88, 407–417 (1990). [CrossRef]
  4. V. V. Marinyuk and D. B. Rogozkin, “Effects of nondiffusive wave propagation upon coherent backscattering by turbid media,” Laser Physics 19, 176–184 (2009). [CrossRef]
  5. V. V. Marinyuk and D. B. Rogozkin, “Wings of coherent backscattering from a disordered medium with large inhomogeneities,” Phys. Rev. E 83, 066604 (2011). [CrossRef]
  6. S. F. Smerd and K. C. Westfold, “The characteristics of radio-frequency radiation in an ionized gas, with applications to the transfer of radiation in the solar atmosphere,” Philos. Mag. 40, 831–848 (1949). [CrossRef]
  7. L. Liu, L. Zhang, and H. Tan, “Radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems,” J. Quant. Spectrosc. Radiat. Transfer 97, 446–456 (2006). [CrossRef]
  8. L. Liu, H. Zhang, and H. Tan, “Monte Carlo discrete curved ray-tracing method for radiative transfer in an absorbing-emitting semitransparent slab with variable spatial refractive index,” J. Quant. Spectrosc. Radiat. Transfer 84, 357–362 (2004). [CrossRef]
  9. D. Lemonnier and V. L. Dez, “Discrete ordinates solution of radiative transfer across a slab with variable refractive index,” J. Quant. Spectrosc. Radiat. Transfer 73, 195–204 (2002). [CrossRef]
  10. A. Afanasiev, “The energy spectrum of spacecraft radio signals in the caustic shadow zone of the Sun: a new diagnostic of the solar coronal plasma,” J. Atmos. Sol. Terr. Phys. 67, 1002–1013 (2005). [CrossRef]
  11. Y. A. Ilyushin, “Impact of the plasma fluctuations in the martian ionosphere on the performance of the synthetic aperture ground-penetrating radar,” Planet. Space Sci. 57, 1458–1466 (2009). [CrossRef]
  12. Y. A. Ilyushin, “Martian northern polar cap: layering and possible implications for radar sounding,” Planet. Space Sci. 52, 1195–1207 (2004). [CrossRef]
  13. Y. A. Ilyushin, “Coherent backscattering enhancement in highly anisotropically scattering media: numerical solution,” J. Quant. Spectrosc. Radiat. Transfer 113, 348–354 (2012). [CrossRef]
  14. Y. A. Ilyushin, “Coherent backscattering enhancement in medium with variable refractive index,” J. Quant. Spectrosc. Radiat. Transfer 117, 133–139 (2013). [CrossRef]
  15. G. Bekefi, Radiation Processes in Plasmas (Wiley, 1966).
  16. R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems (Interscience, 1967).
  17. K.-Y. Zhu, Y. Huang, and J. Wang, “Curved ray tracing method for one-dimensional radiative transfer in the linear-anisotropic scattering medium with graded index,” J. Quant. Spectrosc. Radiat. Transfer 112, 377–383 (2011). [CrossRef]
  18. A. Sassaroli and F. Martelli, “Equivalence of four Monte Carlo methods for photon migration in turbid media,” J. Opt. Soc. Am. A 29, 2110–2117 (2012). [CrossRef]
  19. M. L. Shendeleva, “Radiative transfer in a turbid medium with a varying refractive index: comment,” J. Opt. Soc. Am. A 21, 2464–2467 (2004). [CrossRef]
  20. A. Isimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  21. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
  22. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy.” Astrophys. J. 93, 70–83 (1941). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited