OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 7 — Jul. 1, 2013
  • pp: 1328–1334

Insights into the dependent-scattering contributions to the extinction coefficient in highly scattering suspensions

A. García-Valenzuela, H. Contreras-Tello, J. A. Olivares, and F. L. S. Cuppo  »View Author Affiliations


JOSA A, Vol. 30, Issue 7, pp. 1328-1334 (2013)
http://dx.doi.org/10.1364/JOSAA.30.001328


View Full Text Article

Enhanced HTML    Acrobat PDF (847 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study theoretically the extinction of collimated light in random systems of highly scattering particles embedded in nonabsorbing media. We aim to provide rough guidelines on the behavior of the extinction coefficient in the so-called dependent-scattering regime. We base our analysis on Keller’s second order perturbative approximation to the effective propagation constant. To gain physical insight, we also analyze a simple model based on the physical notion that particles in a dense system scatter light in an effective medium.

© 2013 Optical Society of America

OCIS Codes
(290.2200) Scattering : Extinction
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

ToC Category:
Scattering

History
Original Manuscript: February 12, 2013
Revised Manuscript: May 6, 2013
Manuscript Accepted: May 11, 2013
Published: June 7, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Citation
A. García-Valenzuela, H. Contreras-Tello, J. A. Olivares, and F. L. S. Cuppo, "Insights into the dependent-scattering contributions to the extinction coefficient in highly scattering suspensions," J. Opt. Soc. Am. A 30, 1328-1334 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-7-1328


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, 1997).
  2. Y. Huang and E. M. Sevick-Muraca, “Validating the assumption to the interference approximation by use of measurements of absorption efficiency and hindered scattering in dense suspensions,” Appl. Opt. 43, 814–819 (2004). [CrossRef]
  3. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42, 4023–4030 (2003). [CrossRef]
  4. J.-C. Auger, V. Martínez, and B. Stout, “Absorption and scattering properties of dense ensembles of nonspherical particles,” J. Opt. Soc. Am. A 24, 3508–3516 (2007). [CrossRef]
  5. V. A. Loiko and G. I. Ruban, “Absorption by a layer of densely packed subwavelength-sized particles,” J. Quant. Spectrosc. Radiat. Transfer 89, 271–278 (2004). [CrossRef]
  6. V. K. Varadan, V. N. Bringi, and V. V. Varadan, “Coherent electromagnetic wave propagation through randomly distributed dielectric scatterers,” Phys. Rev. D 19, 2480–2489 (1979). [CrossRef]
  7. V. N. Bringi, V. V. Varandan, and V. K. Varandan, “The effects of pair correlation function on coherent wave attenuation in discrete random media,” IEEE Trans. Antennas Propag. 30, 805–808 (1982). [CrossRef]
  8. V. N. Bringi, V. K. Varandan, and V. V. Varandan, “Coherent wave attenuation by a random distribution of particles,” Radio Sci. 17, 946–952 (1982). [CrossRef]
  9. A. Ishimaru and Y. Kuga, “Attenuation constant of coherent field in a dense distribution of particles,” J. Opt. Soc. Am. 72, 1317–1320 (1982). [CrossRef]
  10. V. K. Varadan, V. N. Bringi, V. V. Varadan, and A. Ishimaru, “Multiple scattering theory for waves in discrete random media and comparison with experiments,” Radio Sci. 18, 321–327 (1983). [CrossRef]
  11. R. West, D. Gibbs, L. Tsang, and A. K. Fund, “Comparison of optical scattering experiments and the quasi-crystalline approximation for dense media,” J. Opt. Soc. Am. A 11, 1854–1858 (1994). [CrossRef]
  12. V. P. Dick, V. A. Loiko, and A. P. Ivanov, “Angular structure of radiation scattered by monolayer of particles: experimental study,” Appl. Opt. 36, 4235–4240 (1997). [CrossRef]
  13. V. A. Loiko, V. P. Dick, and A. P. Ivanov, “Passage of light through a dispersion medium with a high concentration of discrete inhomogeneities: experiment,” Appl. Opt. 38, 2640–2646 (1999). [CrossRef]
  14. V. P. Dick and A. P. Ivanov, “Extinction of light in dispersive media with high particle concentrations: applicability limits of the interference approximation,” J. Opt. Soc. Am. A 16, 1034–1038 (1999). [CrossRef]
  15. L. Tsang and J. A. Kong, “Multiple scattering theory for discrete scatterers,” Scattering of Electromagnetic Waves: Advanced Topics (Wiley, 2001), Chap. 5, pp. 128–130.
  16. M. Lax, “Multiple scattering of waves II: effective field in dense systems,” Phys. Rev. 85, 621–629 (1952). [CrossRef]
  17. L. Hespel, S. Mainguy, and J.-J. Greffet, “Theoretical and experimental investigation of the extinction in a dense distribution of particles: nonlocal effects,” J. Opt. Soc. Am. A 18, 3072–3076 (2001). [CrossRef]
  18. J. B. Keller, “Stochastic equations and wave propagation in random media,” Proc. Symp. Appl. Math. 16, 145–170 (1964). [CrossRef]
  19. S. Durant, O. Calvo-Perez, N. Vukadinovic, and J.-J. Greffet, “Light scattering by a random distribution of particles embedded in absorbing media: diagrammatic expansion of the extinction coefficient,” J. Opt. Soc. Am. A 24, 2943–2952 (2007). [CrossRef]
  20. S. Durant, O. Calvo-Perez, N. Vukadinovic, and J.-J. Greffet, “Light scattering by a random distribution of particles embedded in absorbing media: full-wave Monte Carlo solutions of the extinction coefficient,” J. Opt. Soc. Am. A 24, 2953–2961 (2007). [CrossRef]
  21. R. G. Barrera and A. García-Valenzuela, “Coherent reflectance in a system of random Mie scatterers and its relation to the effective medium approach,” J. Opt. Soc. Am. A 20, 296–311 (2003). [CrossRef]
  22. R. G. Barrera, A. Reyes-Coronado, and A. García-Valenzuela, “Nonlocal nature of the electrodynamic response of colloidal systems,” Phys. Rev. B 75, 184202 (2007). [CrossRef]
  23. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  24. K. Busch and C. M. Soukoulis, “Transport properties of random media: an energy-density CPA approach,” Phys. Rev. B 54, 893–899 (1996). [CrossRef]
  25. H. Zhang, P. Zhu, Y. Xu, H. Zhu, and M. Xu, “Effective medium theory for random media composed of two-layered spheres,” J. Opt. Soc. Am. A 28, 2292–2297 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited