OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 7 — Jul. 1, 2013
  • pp: 1350–1357

Formation of polarization-symmetrical beams using cube-corner reflectors

A. L. Sokolov  »View Author Affiliations


JOSA A, Vol. 30, Issue 7, pp. 1350-1357 (2013)
http://dx.doi.org/10.1364/JOSAA.30.001350


View Full Text Article

Enhanced HTML    Acrobat PDF (1302 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider the basic properties and features of beams with a defined type of polarization symmetry, in particular beams formed by Laguerre–Gauss modes of the second-order. On the whole the polarization structure of such beams does not have a certain polarization state. We have shown the approach to such beams’ formation with the use of cube-corner reflectors, with the faces having a special dielectric interference coating.

© 2013 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(260.1960) Physical optics : Diffraction theory
(260.2130) Physical optics : Ellipsometry and polarimetry
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Physical Optics

History
Original Manuscript: February 22, 2013
Revised Manuscript: May 1, 2013
Manuscript Accepted: May 8, 2013
Published: June 17, 2013

Citation
A. L. Sokolov, "Formation of polarization-symmetrical beams using cube-corner reflectors," J. Opt. Soc. Am. A 30, 1350-1357 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-7-1350


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. I. Lamekin and K. G. Predko, “Change of the polarization structure of axial polarized light beams by lens systems,” Opt. Spectrosc. 60, 137–142 (1986).
  2. J. P. McGuire and R. A. Chipman, “Diffraction image formation in optical systems with polarization. I: formulation and example,” J. Opt. Soc. Am. A. 7, 1614–1626 (1990). [CrossRef]
  3. R. A. Chipman, “Mechanics of polarization ray tracing,” Opt. Eng. 34, 1636–1645 (1995). [CrossRef]
  4. E. F. Ishchenko and A. L. Sokolov, “Spatially depolarized laser radiation,” Quantum Electron. 34, 91–94 (2004). [CrossRef]
  5. A. L. Sokolov, “Theory of polarization-non-uniform laser radiation,” Proc. SPIE 4316, 112–120 (2000). [CrossRef]
  6. A. L. Sokolov, “Method of polarization-ray matrix,” Laser Technol. Opt. Electron. 3–4, 98–105 (1993).
  7. E. F. Ishchenko and A. L. Sokolov, Polarization Optics (Physmathlit, 2012), pp. 324–421.
  8. A. L. Sokolov, “A technique for the calculation of the natural waves of a cavity with polarization nonuniform elements,” Opt. Spectrosc. 83, 930–936 (1997).
  9. A. L. Sokolov and V. V. Murashkin, “Diffraction polarization optical elements with radial symmetry,” Opt. Spectrosc. 111, 859–865 (2011). [CrossRef]
  10. V. V. Korotaev and E. D. Pankov, “Polarization properties of cube-corner reflectors,” Opt. Mech. Ind. 1, 9–12 (1981).
  11. J. J. Degnan, “Millimeter accuracy satellite laser ranging: a review” in Contributions of Space Geodesy to Geodynamics: Technology, Vol. 25, AGU Geodynamics Series (AGU, 1993), pp. 133–162.
  12. D. Arnold, “Cross section of ILRS satellites,” ILRS Technical Workshop, Koetzting, Germany, October2003.
  13. M. A. Sadovnikov and A. L. Sokolov, “Spatial polarization structure of radiation formed by a retroreflector with nonmetalized faces,” Opt. Spectrosc. 107, 201–206 (2009). [CrossRef]
  14. K. Crabtree and R. Chipman, “Polarization conversion cube-corner retroreflector,” Appl. Opt. 49, 5882–5890 (2010). [CrossRef]
  15. A. L. Sokolov, “Laser beams with periodic polarization properties,” Opt. Spectrosc. 104, 124–125 (2008). [CrossRef]
  16. J. P. McGuire and R. A. Chipman, “Polarization aberrations,” Appl. Opt. 33, 5080–5100 (1994). [CrossRef]
  17. A. L. Sokolov, “Polarization aberration of laser radiation,” Opt. Spectrosc. 89, 469–475 (2000). [CrossRef]
  18. M. Shribak, S. Inoue, and R. Oldenbourg, “Polarization aberration caused by differential transmission and phase shift in high-numerical-aperture lenses: theory, measurement and rectification,” Opt. Eng. 41, 943–954 (2002). [CrossRef]
  19. A. L. Sokolov, “Polarization aberration of radiation at the lens focus,” Tech. Phys. Lett. 31, 756–758 (2005). [CrossRef]
  20. V. N. Kuryatov and A. L. Sokolov, “Polarization inhomogeneities of a ring resonator and nonreciprocity of counter propagating waves,” Quantum Electron. 32, 324–328 (2002). [CrossRef]
  21. D. L. Golovashkin, L. L. Doskolovich, N. L. Kazanskiy, and A. V. Volkov, Methods of Computer Optics (Physmathlit., 2007).
  22. A. V. Nesterov, V. G. Niziev, and A. L. Sokolov, “Laser radiation with axial-symmetry polarization,” Vestnik MEI 2, 76–79 (1999).
  23. A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33, 1817–1822 (2000). [CrossRef]
  24. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef]
  25. D. Rozas, C. Law, and G. Swartzlander, “Propogation dynamics of optical vortices,” J. Opt. Soc. Am. B 14, 3054–3065 (1997). [CrossRef]
  26. V. V. Kotlyar, A. A. Almazov, S. N. Khonina, V. A. Soifer, K. Jefimovs, and J. Turunen, “Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate,” J. Opt. Soc. Am. A 22, 849–861 (2005). [CrossRef]
  27. J. P. McGuire and R. A. Chipman, “Analysis of spatial pseudodepolarizers in imaging systems,” Opt. Eng. 29, 1478–1484 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited