## Nonparaxial propagation properties of a vector partially coherent dark hollow beam |

JOSA A, Vol. 30, Issue 7, pp. 1358-1372 (2013)

http://dx.doi.org/10.1364/JOSAA.30.001358

Enhanced HTML Acrobat PDF (2005 KB)

### Abstract

Based on the generalized Raleigh–Sommerfeld diffraction integrals, analytical nonparaxial propagation formulas for the elements of the cross-spectral density matrix of a vector partially coherent dark hollow beam (DHB) in free space are derived. The effect of spatial coherence and beam waist sizes on the statistical properties of a nonparaxial vector DHB is studied numerically. It is found that one can modulate the statistical properties of a nonparaxial vector DHB by varying its initial spatial coherence, which will be useful in some applications where nonparaxial beams are commonly encountered.

© 2013 Optical Society of America

**OCIS Codes**

(030.1640) Coherence and statistical optics : Coherence

(260.5430) Physical optics : Polarization

(350.5500) Other areas of optics : Propagation

**ToC Category:**

Propagation

**History**

Original Manuscript: January 31, 2013

Revised Manuscript: May 4, 2013

Manuscript Accepted: May 15, 2013

Published: June 17, 2013

**Citation**

Yangsheng Yuan, Shengcai Du, Yiming Dong, Fei Wang, Chengliang Zhao, and Yangjian Cai, "Nonparaxial propagation properties of a vector partially coherent dark hollow beam," J. Opt. Soc. Am. A **30**, 1358-1372 (2013)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-7-1358

Sort: Year | Journal | Reset

### References

- J. Yin, W. Gao, and Y. Zhu, “Generation of dark hollow beams and their applications,” in Progress in Optics, E. Wolf, ed., Vol. 44 (North-Holland, 2003), pp. 119–204.
- T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997). [CrossRef]
- Y. Cai and S. He, “Propagation of various dark hollow beams in a turbulent atmosphere,” Opt. Express 14, 1353–1367 (2006). [CrossRef]
- F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64, 491–495 (1987). [CrossRef]
- H. S. Lee, B. W. Stewart, K. Choi, and H. Fenichel, “Holographic nondiverging hollow beam,” Phys. Rev. A 49, 4922–4927 (1994). [CrossRef]
- J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000). [CrossRef]
- Y. Cai, X. Lu, and Q. Lin, “Hollow Gaussian beams and their propagation properties,” Opt. Lett. 28, 1084–1086 (2003). [CrossRef]
- Y. Cai and Q. Lin, “Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems,” J. Opt. Soc. Am. A 21, 1058–1065 (2004). [CrossRef]
- Z. Mei and D. Zhao, “Controllable dark-hollow beams and their propagation characteristics,” J. Opt. Soc. Am. A 22, 1898–1902 (2005). [CrossRef]
- Y. Cai, “Model for an anomalous hollow beam and its paraxial propagation,” Opt. Lett. 32, 3179–3181 (2007). [CrossRef]
- Y. Cai, Z. Wang, and Q. Lin, “An alternative theoretical model for an anomalous hollow beam,” Opt. Express 16, 15254–15267 (2008). [CrossRef]
- Q. Sun, K. Zhou, G. Fang, G. Zhang, Z. Liu, and S. Liu, “Hollow sinh-Gaussian beams and their paraxial properties,” Opt. Express 20, 9682–9691 (2012). [CrossRef]
- Y. Cai and D. Ge, “Propagation of various dark hollow beams through an apertured paraxial ABCD optical system,” Phys. Lett. A 357, 72–80 (2006). [CrossRef]
- Z. Liu, J. Dai, X. Sun, and S. Liu, “Generation of hollow Gaussian beam by phase-only filtering,” Opt. Express 16, 19926–19933 (2008). [CrossRef]
- Y. Zhang, “Generation of thin and hollow beams by the axicon with a large open angle,” Opt. Commun. 281, 508–514 (2008). [CrossRef]
- H. Ma, P. Zhou, X. Wang, Y. Ma, F. Xi, X. Xu, and Z. Liu, “Near-diffraction-limited annular flattop beam shaping with dual phase only liquid crystal spatial light modulators,” Opt. Express 18, 8251–8260 (2010). [CrossRef]
- Y. Nie, H. Ma, X. Li, W. Hu, and J. Yang, “Generation of dark hollow femtosecond pulsed beam by phase-only liquid crystal spatial light modulator,” Appl. Opt. 50, 4174–4179 (2011). [CrossRef]
- Y. Cai and S. He, “Propagation of hollow Gaussian beams through apertured paraxial optical systems,” J. Opt. Soc. Am. A 23, 1410–1418 (2006). [CrossRef]
- Y. Chen, Y. Cai, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation properties of dark hollow beams in a weak turbulent atmosphere,” Appl. Phys. B 90, 87–92 (2008). [CrossRef]
- Y. Cai and L. Zhang, “Coherent and partially coherent dark hollow beams with rectangular symmetry and paraxial propagation,” J. Opt. Soc. Am. B 23, 1398–1407 (2006). [CrossRef]
- X. Lu and Y. Cai, “Partially coherent circular and elliptical dark hollow beams and their paraxial propagations,” Phys. Lett. A 369, 157–166 (2007). [CrossRef]
- Y. Cai and F. Wang, “Partially coherent anomalous hollow beam and its paraxial propagation,” Phys. Lett. A 372, 4654–4660 (2008). [CrossRef]
- X. Li, F. Wang, and Y. Cai, “An alternative model for a partially coherent elliptical dark hollow beam,” Opt. Laser Technol. 43, 577–585 (2011). [CrossRef]
- C. Zhao, Y. Cai, F. Wang, X. Lu, and Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33, 1389–1391 (2008). [CrossRef]
- Y. Dong, Y. Cai, and C. Zhao, “Degree of polarization of a tightly focused partially coherent dark hollow beam,” Appl. Phys. B 105, 405–414 (2011). [CrossRef]
- Y. Yuan, Y. Cai, J. Qu, H. T. Eyyuboğlu, Y. Baykal, and O. Korotkova, “M2-factor coherent and partially coherent dark hollow beams propagating in turbulent atmosphere,” Opt. Express 17, 17344–17356 (2009). [CrossRef]
- H. T. Eyyuboğlu, “Propagation and coherence properties of higher order partially coherent dark hollow beams in turbulence,” Opt. Laser Technol. 40, 156–166 (2008). [CrossRef]
- Y. Qiu, Z. Chen, and L. Liu, “Partially coherent dark hollow beams propagating through real ABCD optical systems in a turbulent atmosphere,” J. Mod. Opt. 57, 662–669 (2010). [CrossRef]
- H. Wang and X. Li, “Propagation of partially coherent controllable dark hollow beams with various symmetries in turbulent atmosphere,” Opt. Lasers Eng. 48, 48–57 (2010). [CrossRef]
- G. Taherabadi, M. Alavynejad, F. D. Kashani, B. Ghafary, and M. Yousefi, “Changes in the spectral degree of polarization of a partially coherent dark hollow beam in the turbulent atmosphere for on-axis and off-axis propagation point,” Opt. Commun. 285, 2017–2021 (2012). [CrossRef]
- G. Zhou, Y. Cai, and X. Chu, “Propagation of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere,” Opt. Express 20, 9897–9910 (2012). [CrossRef]
- Y. Yuan, Y. Chen, C. Liang, Y. Cai, and Y. Baykal, “Effect of spatial coherence on the scintillation properties of a dark hollow beam in turbulent atmosphere,” Appl. Phys. B 110, 519–529 (2013). [CrossRef]
- B. K. Yadav and H. C. Kandpal, “Spectral anomalies of polychromatic DHGB and its applications in FSO,” J. Lightwave Technol. 29, 960–966 (2011). [CrossRef]
- Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009). [CrossRef]
- Z. Gao and B. Lu, “Nonparaxial dark-hollow Gaussian beam,” Chin. Phys. Lett. 23, 106–109 (2006). [CrossRef]
- Z. Mei and D. Zhao, “Non-paraxial propagation of controllable dark-hollow beams,” J. Opt. Soc. Am. A 25, 537–542 (2008). [CrossRef]
- D. Deng and Q. Guo, “Exact nonparaxial propagation of a hollow Gaussian beam,” J. Opt. Soc. Am. A 26, 2044–2049 (2009). [CrossRef]
- G. Zhou, “Non-paraxial investigation in the far field properties of controllable dark-hollow beams diffracted by a circular aperture,” J. Opt. Soc. Am. A 27, 890–894 (2010). [CrossRef]
- D. Deng, H. Yu, S. Xu, G. Tian, and Z. Fan, “Nonparaxial propagation of vectorial hollow Gaussian beams,” J. Opt. Soc. Am. B 25, 83–87 (2008). [CrossRef]
- G. Wu, Q. Lou, and J. Zhou, “Analytical vectorial structure of hollow Gaussian beams in the far field,” Opt. Express 16, 6417–6424 (2008). [CrossRef]
- G. Zhou, “Analytical vectorial structure of controllable dark-hollow beams in the far field,” J. Opt. Soc. Am. A 26, 1654–1660 (2009). [CrossRef]
- G. Zhou, “Analytical vectorial structure of controllable dark-hollow beams close to the source,” J. Opt. Soc. Am. A 26, 2386–2395 (2009). [CrossRef]
- Y. Yang, X. Li, and K. Duan, “Nonparaxial propagation of vectorial hollow Gaussian beams diffracted at an annular aperture,” Opt. Eng. 50, 078001 (2011). [CrossRef]
- X. Li and Y. Cai, “Nonparaxial propagation of a partially coherent dark hollow beam,” Appl. Phys. B 102, 205–213 (2011). [CrossRef]
- E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).
- E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312, 263–267 (2003). [CrossRef]
- F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, “Partially polarized Gaussian Schell-model beams,” J. Opt. A 3, 1–9 (2001). [CrossRef]
- O. Korotkova, M. Salem, and E. Wolf, “Beam conditions for radiation generated by an electromagnetic Gaussian Schell-model source,” Opt. Lett. 29, 1173–1175 (2004). [CrossRef]
- D. F. V. James, “Changes of polarization of light beams on propagation in free space,” J. Opt. Soc. Am. A 11, 1641–1643 (1994). [CrossRef]
- T. Shirai, O. Korotkova, and E. Wolf, “A method of generating electromagnetic Gaussian Schell-model beams,” J. Opt. A 7, 232–237 (2005). [CrossRef]
- O. Korotkova and E. Wolf, “Changes in the state of polarization of a random electromagnetic beam on propagation,” Opt. Commun. 246, 35–43 (2005). [CrossRef]
- S. Zhu, Y. Cai, and O. Korotkova, “Propagation factor of a stochastic electromagnetic Gaussian Schell-model beam,” Opt. Express 18, 12587–12598 (2010). [CrossRef]
- O. Korotkova, “Scintillation index of a stochastic electromagnetic beam propagating in random media,” Opt. Commun. 281, 2342–2348 (2008). [CrossRef]
- Y. Cai, O. Korotkova, H. T. Eyyuboğlu, and Y. Baykal, “Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere,” Opt. Express 16, 15834–15846 (2008). [CrossRef]
- O. Korotkova, Y. Cai, and E. Watson, “Stochastic electromagnetic beams for LIDAR systems operating through turbulent atmosphere,” Appl. Phys. B 94, 681–690 (2009). [CrossRef]
- S. Zhu and Y. Cai, “Spectral shift of a twisted electromagnetic Gaussian Schell-model beam focused by a thin lens,” Appl. Phys. B 99, 317–323 (2010). [CrossRef]
- M. Yao, Y. Cai, H. T. Eyyuboğlu, Y. Baykal, and O. Korotkova, “Evolution of the degree of polarization of an electromagnetic Gaussian Schell-model beam in a Gaussian cavity,” Opt. Lett. 33, 2266–2268 (2008). [CrossRef]
- G. Wu and Y. Cai, “Modulation of spectral intensity, polarization and coherence of a stochastic electromagnetic beam,” Opt. Express 19, 8700–8714 (2011). [CrossRef]
- S. Zhu and Y. Cai, “M2-factor of a stochastic electromagnetic beam in a Gaussian cavity,” Opt. Express 18, 27567–27581 (2010). [CrossRef]
- Z. Tong, Y. Cai, and O. Korotkova, “Ghost imaging with electromagnetic stochastic beams,” Opt. Commun. 283, 3838–3845 (2010). [CrossRef]
- C. Zhao, Y. Cai, and O. Korotkova, “Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams,” Opt. Express 17, 21472–21487 (2009). [CrossRef]
- F. Wang, G. Wu, X. Liu, S. Zhu, and Y. Cai, “Experimental measurement of the beam parameters of an electromagnetic Gaussian Schell-model source,” Opt. Lett. 36, 2722–2724 (2011). [CrossRef]
- Y. Dong, Y. Cai, C. Zhao, and M. Yao, “Statistics properties of a cylindrical vector partially coherent beam,” Opt. Express 19, 5979–5992 (2011). [CrossRef]
- F. Wang, Y. Cai, Y. Dong, and O. Korotkova, “Experimental generation of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett. 100, 051108 (2012). [CrossRef]
- Y. Dong, F. Wang, C. Zhao, and Y. Cai, “Effect of spatial coherence on propagation, tight focusing and radiation forces of an azimuthally polarized beam,” Phys. Rev. A 86, 013840 (2012). [CrossRef]
- G. Wu, F. Wang, and Y. Cai, “Coherence and polarization properties of a radially polarized beam with variable spatial coherence,” Opt. Express 20, 28301–28318 (2012). [CrossRef]
- K. Duan and B. Lü, “Partially coherent vectorial nonparaxial beams,” J. Opt. Soc. Am. A 21, 1924–1932 (2004). [CrossRef]
- L. Zhang, F. Wang, Y. Cai, and O. Korotkova, “Degree of paraxiality of a stochastic electromagnetic Gaussian Schell-model beam,” Opt. Commun. 284, 1111–1117 (2011). [CrossRef]
- R. K. Luneburg, Mathematical Theory of Optics (University of California, 1966).
- A. Erdelyi, W. Magnus, and F. Oberhettinger, Tables of Integral Transforms (McGraw-Hill, 1954).
- J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005). [CrossRef]
- T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002). [CrossRef]
- O. Korotkova and E. Wolf, “Spectral degree of coherence of a random three-dimensional electromagnetic field,” J. Opt. Soc. Am. A 21, 2382–2385 (2004). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.