OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 1476–1483

Engineering parabolic beams with dynamic intensity profiles

Adrian Ruelas, Servando Lopez-Aguayo, and Julio C. Gutiérrez-Vega  »View Author Affiliations

JOSA A, Vol. 30, Issue 8, pp. 1476-1483 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1544 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present optical fields formed by superposing nondiffracting parabolic beams with distinct longitudinal wave-vector components, generating light profiles that display intensity fluxes following parabolic paths in the transverse plane. Their propagation dynamics vary depending on the physical mechanism originating interference, where the possibilities include constructive and destructive interference between traveling parabolic beams, interference between stationary parabolic modes, and combinations of these. The dark parabolic region exhibited by parabolic beams permits a straightforward superposition of intensity fluxes, allowing formation of a variety of profiles, which can exhibit circular, elliptic, and other symmetries.

© 2013 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(350.5500) Other areas of optics : Propagation

ToC Category:
Diffraction and Gratings

Original Manuscript: April 19, 2013
Manuscript Accepted: June 4, 2013
Published: July 3, 2013

Adrian Ruelas, Servando Lopez-Aguayo, and Julio C. Gutiérrez-Vega, "Engineering parabolic beams with dynamic intensity profiles," J. Opt. Soc. Am. A 30, 1476-1483 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
  2. Z. Bouchal, “Nondiffracting optical beams: physical properties, experiments, and applications,” Czech. J. Phys. 53, 537–578 (2003). [CrossRef]
  3. M. Mazilu, D. J. Stevenson, F. J. Gunn-Moore, and K. Dholakia, “Light beats the spread: ‘non-diffracting’ beams,” Laser Photon. Rev. 4, 529–547 (2010).
  4. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef]
  5. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000). [CrossRef]
  6. M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chávez-Cerda, “Parabolic nondiffracting optical wave fields,” Opt. Lett. 29, 44–46 (2004). [CrossRef]
  7. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005). [CrossRef]
  8. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, G. A. Ramírez, E. Tepichín, R. M. Rodríguez-Dagnino, S. Chávez-Cerda, and G. H. C. New, “Experimental demonstration of optical Mathieu beams,” Opt. Commun. 195, 35–40 (2001). [CrossRef]
  9. C. López-Mariscal, M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chávez-Cerda, “Observation of parabolic nondiffracting optical fields,” Opt. Express 13, 2364–2369 (2005). [CrossRef]
  10. C. López-Mariscal and J. C. Gutiérrez-Vega, “The generation of nondiffracting beams using inexpensive computer-generated holograms,” Am. J. Phys. 75, 36–42 (2007).
  11. Z. Bouchal and J. Wagner, “Self-reconstruction effect in free propagation wavefield,” Opt. Commun. 176, 299–307 (2000). [CrossRef]
  12. S. Chavez-Cerda, M. A. Meneses-Nava, and J. M. Hicknann, “Interference of travelling nondiffracting beams,” Opt. Lett. 23, 1871–1873 (1998). [CrossRef]
  13. W. D. Montgomery, “Self-imaging objects of infinite aperture,” J. Opt. Soc. Am. 57, 772–778 (1967). [CrossRef]
  14. W. D. Montgomery, “Algebraic formulation of diffraction applied to self-imaging,” J. Opt. Soc. Am. 58, 1112–1124 (1968). [CrossRef]
  15. Y. V. Kartashov, L. Torner, and D. N. Christodoulides, “Soliton dragging by dynamic optical lattices,” Opt. Lett. 30, 1378–1380 (2005). [CrossRef]
  16. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Soliton spiraling in optically induced rotating Bessel lattices,” Opt. Lett. 30, 637–639 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3858 KB)     
» Media 2: AVI (3858 KB)     
» Media 3: AVI (3858 KB)     
» Media 4: AVI (3858 KB)     
» Media 5: AVI (3858 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited