OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 1484–1491

Online tracking of deformable objects under occlusion using dominant points

Dilip K. Prasad and Michael S. Brown  »View Author Affiliations

JOSA A, Vol. 30, Issue 8, pp. 1484-1491 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5166 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper deals with tracking of deformable objects in the presence of occlusion using dominant point representation of the boundary contour. A novel nonintegral time propagation model for propagating the dominant points is proposed. It uses an initial guess generated from a linear operation and an analytical conjugate gradient approach for online robust learning of the shape deformation and motion model. A scheme is presented to automatically detect and correct the region of large local deformation. In order to deal with occlusion, admissible restrictions on deformation and motion of the object are automatically determined. The proposed method overcomes the need of offline learning and learns the deformation and motion model of the object using very few initial frames of the input video. The performance of the method is demonstrated using varieties of videos of different objects.

© 2013 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(100.2000) Image processing : Digital image processing
(100.2960) Image processing : Image analysis
(100.5010) Image processing : Pattern recognition

ToC Category:
Image Processing

Original Manuscript: March 15, 2013
Revised Manuscript: June 14, 2013
Manuscript Accepted: June 15, 2013
Published: July 5, 2013

Dilip K. Prasad and Michael S. Brown, "Online tracking of deformable objects under occlusion using dominant points," J. Opt. Soc. Am. A 30, 1484-1491 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Ling, E. Liu, H. Liang, and J. Yang, “Infrared target tracking with kernel-based performance metric and eigenvalue-based similarity measure,” Appl. Opt. 46, 3239–3252 (2007). [CrossRef]
  2. R. Han, Z. Jing, and Y. Li, “Kernel based visual tracking with scale invariant features,” Chin. Opt. Lett. 6, 168–171 (2008). [CrossRef]
  3. R. Yang, Z. Wang, S. Liu, and X. Wu, “Design of an accurate near infrared optical tracking system in surgical navigation,” J. Lightwave Technol. 31, 223–231 (2013). [CrossRef]
  4. H. Hua, P. Krishnaswamy, and J. P. Rolland, “Video-based eyetracking methods and algorithms in head-mounted displays,” Opt. Express 14, 4328–4350 (2006). [CrossRef]
  5. L. I. Muravskii and N. V. Fit’o, “Estimating the displacements of the surfaces of deformable objects and of solid bodies by an optical speckle-correlation technique,” J. Opt. Technol. 72, 410–414 (2005). [CrossRef]
  6. G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17, 17895–17908 (2009). [CrossRef]
  7. T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Trans. Image Process. 10, 266–277 (2001). [CrossRef]
  8. A. Yilmaz, O. Javed, and M. Shah, “Object tracking: a survey,” ACM Comput. Surv.38 (2006). [CrossRef]
  9. C. Rother, V. Kolmogorov, and A. Blake, ““Grabcut”: interactive foreground extraction using iterated graph cuts,” ACM Trans. Graph. 23, 309–314 (2004). [CrossRef]
  10. J. Malcolm, Y. Rathi, and A. Tannenbaum, “Multi-object tracking through clutter using graph cuts,” in IEEE 11th International Conference on Computer Vision, 2007 (ICCV 2007) (2007), pp. 1–5.
  11. X. Zhang and J. Yang, “Moving object detection based on shape prediction,” J. Opt. Soc. Am. A 26, 342–349 (2009). [CrossRef]
  12. D. Cremers, “Dynamical statistical shape priors for level set-based tracking,” IEEE Trans. Pattern Anal. Mach. Intell. 28, 1262–1273 (2006). [CrossRef]
  13. T. F. Cootes, C. J. Twining, K. O. Babalola, and C. J. Taylor, “Diffeomorphic statistical shape models,” Image Vision Comput. 26, 326–332 (2008). [CrossRef]
  14. Y. N. Wu, Z. Z. Si, H. F. Gong, and S. C. Zhu, “Learning active basis model for object detection and recognition,” Int. J. Comput. Vision 90, 198–235 (2010). [CrossRef]
  15. D. K. Prasad, “Survey of the problem of object detection in real images,” Int. J. Image Process. 6, 441–466 (2012).
  16. D. K. Prasad, “Geometric primitive feature extraction—concepts, algorithms, and applications,” Ph.D. thesis (Nanyang Technological University, 2012).
  17. T. Amiaz and N. Kiryati, “Piecewise-smooth dense optical flow via level sets,” Int. J. Comput. Vision 68, 111–124 (2006). [CrossRef]
  18. A. Bartesaghi and G. Sapiro, “Tracking of moving objects under severe and total occlusions,” in IEEE International Conference on Image Processing, 2005 (ICIP 2005) (2005), vol. 1, paper I-301-4.
  19. N. Papadakis and E. Memin, “A variational technique for time consistent tracking of curves and motion,” J. Math. Imaging Vision 31, 81–103 (2008). [CrossRef]
  20. V. Ferrari, F. Jurie, and C. Schmid, “From images to shape models for object detection,” Int. J. Comput. Vis. 87, 284–303 (2010). [CrossRef]
  21. P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detection with discriminatively trained part-based models,” IEEE Trans. Pattern Anal. Mach. Intell. 32, 1627–1645 (2010). [CrossRef]
  22. P. Bhowmick and B. B. Bhattacharya, “Fast polygonal approximation of digital curves using relaxed straightness properties,” IEEE Trans. Pattern Anal. Mach. Intell. 29, 1590–1602 (2007). [CrossRef]
  23. D. K. Prasad, M. K. H. Leung, C. Quek, and S.-Y. Cho, “A novel framework for making dominant point detection methods non-parametric,” Image Vision Comput. 30, 843–859 (2012). [CrossRef]
  24. D. K. Prasad and M. K. H. Leung, “Polygonal representation of digital curves,” in Digital Image Processing, S. G. Stanciu, ed. (InTech, 2012).
  25. A. Kolesnikov and P. Fränti, “Polygonal approximation of closed discrete curves,” Pattern Recogn. 40, 1282–1293 (2007). [CrossRef]
  26. D. K. Prasad and M. K. H. Leung, “Reliability/precision uncertainity in shape fitting problems,” in 2010 17th IEEE International Conference on Image Processing (ICIP) (2010), pp. 4277–4280.
  27. K. Petrinec, “Visible-surface reconstruction: identification of surface discontinuities using snakes,” Tech. Rep. , University of California, Los Angeles (2010).
  28. Wikipedia., “Topology—Wikipedia, the free encyclopedia,” accessed Nov.15, 2012, https://en.wikipedia.org/wiki/Topology .
  29. T. Chen, M.-M. Cheng, P. Tan, A. Shamir, and S.-M. Hu, “Sketch2photo: internet image montage,” ACM Trans. Graphics 28, 124 (2009).
  30. A. Y.-S. Chia, S. Zhuo, R. K. Gupta, Y.-W. Tai, S.-Y. Cho, P. Tan, and S. Lin, “Semantic colorization with internet images,” ACM Trans. Graph. 30, 1 (2011). [CrossRef]
  31. K. Katija and J. O. Dabiri, “A viscosity-enhanced mechanism for biogenic ocean mixing,” Nature 460, 624–626 (2009). [CrossRef]
  32. A. Basarab, H. Liebgott, F. Morestin, A. Lyshchik, T. Higashi, R. Asato, and P. Delachartre, “A method for vector displacement estimation with ultrasound imaging and its application for thyroid nodular disease,” Med. Image Anal. 12, 259–274 (2008). [CrossRef]
  33. M. Blume, A. Martinez-Moller, A. Keil, N. Navab, and M. Rafecas, “Joint reconstruction of image and motion in gated positron emission tomography,” IEEE Trans. Med. Imaging 29, 1892–1906 (2010). [CrossRef]
  34. E. Memin and P. Perez, “Hierarchical estimation and segmentation of dense motion fields,” Int. J. Comput. Vis. 46, 129–155 (2002). [CrossRef]
  35. N. Papadakis and A. Bugeau, “Tracking with occlusions via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 144–157 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2544 KB)     
» Media 2: AVI (2531 KB)     
» Media 3: AVI (2767 KB)     
» Media 4: AVI (1382 KB)     
» Media 5: AVI (1340 KB)     
» Media 6: AVI (461 KB)     
» Media 7: AVI (1057 KB)     
» Media 8: AVI (1039 KB)     
» Media 9: AVI (1036 KB)     
» Media 10: AVI (2990 KB)     
» Media 11: AVI (2916 KB)     
» Media 12: AVI (3122 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited