OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 1492–1501

Moving target detection in thermal infrared imagery using spatiotemporal information

Aparna Akula, Ripul Ghosh, Satish Kumar, and H. K. Sardana  »View Author Affiliations


JOSA A, Vol. 30, Issue 8, pp. 1492-1501 (2013)
http://dx.doi.org/10.1364/JOSAA.30.001492


View Full Text Article

Acrobat PDF (1324 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An efficient target detection algorithm for detecting moving targets in infrared imagery using spatiotemporal information is presented. The output of the spatial processing serves as input to the temporal stage in a layered manner. The spatial information is obtained using joint space–spatial-frequency distribution and Rényi entropy. Temporal information is incorporated using background subtraction. By utilizing both spatial and temporal information, it is observed that the proposed method can achieve both high detection and a low false-alarm rate. The method is validated with experimentally generated data consisting of a variety of moving targets. Experimental results demonstrate a high value of F-measure for the proposed algorithm.

© 2013 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.2960) Image processing : Image analysis
(110.3080) Imaging systems : Infrared imaging
(100.4145) Image processing : Motion, hyperspectral image processing

ToC Category:
Image Processing

History
Original Manuscript: March 8, 2013
Revised Manuscript: June 11, 2013
Manuscript Accepted: June 13, 2013
Published: July 11, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Aparna Akula, Ripul Ghosh, Satish Kumar, and H. K. Sardana, "Moving target detection in thermal infrared imagery using spatiotemporal information," J. Opt. Soc. Am. A 30, 1492-1501 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-8-1492


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Treptow, G. Cielniak, and T. Duckett, “Real-time people tracking for mobile robots using thermal vision,” Robot. Auton. Syst. 54, 729–739 (2006). [CrossRef]
  2. R. Manduchi, A. Castano, A. Talukder, and L. Matthies, “Obstacle detection and terrain classification for autonomous off-road navigation,” Auton. Robots 18, 81–102 (2005). [CrossRef]
  3. R. Xin and R. Lei, “Search aid system based on machine vision and its visual attention model for rescue target detection,” in Second WRI Global Congress on Intelligent Systems (GCIS) (IEEE, 2010), pp. 149–152.
  4. S. Sun and H. Park, “Automatic target recognition using target boundary information in FLIR images,” in Proceedings of the IASTED International Conference on Signal and Image Processing (2000), pp. 405–410.
  5. A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal, H. Cao, M. Demirbas, and M. Gouda, “A line in the sand: a wireless sensor network for target detection, classification, and tracking,” Comput. Netw. 46, 605–634 (2004). [CrossRef]
  6. O. Firschein and T. M. Strat, Reconnaissance, Surveillance, and Target Acquisition for the Unmanned Ground Vehicle: Providing Surveillance “Eyes” for an Autonomous Vehicle (Morgan Kaufmann, 1997).
  7. H. Tong, X. Zhao, and C. Yu, “Multi-sensor intelligent transportation monitoring system based on information fusion technology,” in International Conference on Convergence Information Technology (IEEE, 2007), pp. 1726–1732.
  8. M. Kagesawa, S. Ueno, K. Ikeuchi, and H. Kashiwagi, “Recognizing vehicles in infrared images using IMAP parallel vision board,” IEEE Trans. Intell. Transp. Syst. 2, 10–17 (2001).
  9. A. Monnet, A. Mittal, N. Paragios, and V. Ramesh, “Background modeling and subtraction of dynamic scenes,” in Proceedings Ninth IEEE International Conference on Computer Vision (IEEE, 2003), pp. 1305–1312.
  10. J. Wang, H.-L. Eng, A. H. Kam, and W.-Y. Yau, “A framework for foreground detection in complex environments,” in Statistical Methods in Video Processing (Springer, 2004), pp. 129–140.
  11. L. Li and M. K. Leung, “Integrating intensity and texture differences for robust change detection,” IEEE Trans. Image Process. 11, 105–112 (2002). [CrossRef]
  12. I. Haritaoglu, D. Harwood, and L. S. Davis, “W4: real-time surveillance of people and their activities,” IEEE Trans. Pattern Anal. Machine Intell. 22, 809–830 (2000). [CrossRef]
  13. B. Bhanu and I. Pavlidis, Computer Vision Beyond the Visible Spectrum (Springer, 2005).
  14. M. Vollmer and K. P. Möllmann, Infrared Thermal Imaging: Fundamentals, Research and Applications (Wiley-VCH, 2010).
  15. U. Braga-Neto, M. Choudhary, and J. Goutsias, “Automatic target detection and tracking in forward-looking infrared image sequences using morphological connected operators,” J. Electron. Imaging 13, 802–813 (2004). [CrossRef]
  16. Z. Chaohui, D. Xiaohui, X. Shuoyu, S. Zheng, and L. Min, “An improved moving object detection algorithm based on frame difference and edge detection,” in Fourth International Conference on Image and Graphics (IEEE, 2007), pp. 519–523.
  17. R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change detection algorithms: a systematic survey,” IEEE Trans. Image Process. 14, 294–307 (2005). [CrossRef]
  18. J. W. Davis and M. A. Keck, “A two-stage template approach to person detection in thermal imagery,” in Seventh IEEE Workshops on Application of Computer Vision, WACV/MOTIONS ‘05 (IEEE, 2005), Vol. 1, pp. 364–369.
  19. C. Dai, Y. Zheng, and X. Li, “Pedestrian detection and tracking in infrared imagery using shape and appearance,” Comput. vis. image underst. 106, 288–299 (2007).
  20. S. S. Beauchemin and J. L. Barron, “The computation of optical flow,” ACM Comput. Surv. 27, 433–466 (1995). [CrossRef]
  21. Y. Motai, S. Kumar Jha, and D. Kruse, “Human tracking from a mobile agent: optical flow and Kalman filter arbitration,” Signal Process. Image Commun. 27, 83–95 (2012).
  22. A. Fernández-Caballero, J. C. Castillo, J. Martínez-Cantos, and R. Martínez-Tomás, “Optical flow or image subtraction in human detection from infrared camera on mobile robot,” Robot. Auton. Syst. 58, 1273–1281 (2010).
  23. J. Wang, G. Bebis, and R. Miller, “Robust video-based surveillance by integrating target detection with tracking,” in Computer Vision and Pattern Recognition Workshop (IEEE, 2006), p. 137–142.
  24. M. Cristani, M. Farenzena, D. Bloisi, and V. Murino, “Background subtraction for automated multisensor surveillance: a comprehensive review,” EURASIP J. Adv. Signal Process. 2010, 43 (2010). [CrossRef]
  25. M. Piccardi, “Background subtraction techniques: a review,” in 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE, 2004), pp. 3099–3104.
  26. S. Y. Elhabian, K. M. El-Sayed, and S. H. Ahmed, “Moving object detection in spatial domain using background removal techniques-state-of-art,” RPCS 1, 32–54 (2008). [CrossRef]
  27. Y. Benezeth, P.-M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger, “Review and evaluation of commonly-implemented background subtraction algorithms,” in 19th International Conference on Pattern Recognition (IEEE, 2008).
  28. A. M. McIvor, “Background subtraction techniques,” in Proceedings of Image and Vision Computing (Auckland, New Zealand2000).
  29. Y. B. Chin, L. W. Soong, L. H. Siong, and W. W. Kit, “Extended fuzzy background modeling for moving vehicle detection using infrared vision,” IEICE Electron. Exp. 8, 340–345 (2011). [CrossRef]
  30. C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for real-time tracking,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 1999).
  31. B. White and M. Shah, “Automatically tuning background subtraction parameters using particle swarm optimization,” in 2007 IEEE International Conference on Multimedia and Expo (IEEE, 2007), pp. 1826–1829.
  32. M. H. Sigari, N. Mozayani, and H. R. Pourreza, “Fuzzy running average and fuzzy background subtraction: concepts and application,” Int. J. Comput. Sci. Netw. Secur. 8, 138–143 (2008).
  33. A. Strehl and J. Aggarwal, “Detecting moving objects in airborne forward looking infra-red sequences,” in Proceedings IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (IEEE, 1999), pp. 3–12.
  34. D. Davies, P. Palmer, and M. Mirmehdi, “Detection and tracking of very small low contrast objects,” in Proceedings of the British Machine Conference, M. Nixon and J. Carter, eds. (BMVA, 1998).
  35. H. Shekarforoush and R. Chellappa, “A multi-fractal formalism for stabilization, object detection and tracking in FLIR sequences,” in Proceedings 2000 International Conference on Image Processing (IEEE, 2000), pp. 78–81.
  36. Y. Xu, Y. Zhao, C. Jin, Z. Qu, L. Liu, and X. Sun, “Salient target detection based on pseudo-Wigner-Ville distribution and Rényi entropy,” Opt. Lett. 35, 475–477 (2010). [CrossRef]
  37. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932). [CrossRef]
  38. L. D. Jacobson and H. Wechsler, “Joint spatial/spatial-frequency representation,” Signal Process. 14, 37–68 (1988).
  39. S. Gabarda Tébar, “New contributions to the multidimensional analysis of signals and images through the pseudo-Wigner Distribution,” Ph.D. thesis (Universidad Nacional De Educación A Distancia, Spain, 2008).
  40. N. Wiener, Cybernetics (Hermann Paris, 1948).
  41. C. E. Shannon and W. Weaver, “A mathematical theory of communication” Bell Syst. Tech. J. 27, 379–423 (1948).
  42. A. Renyi, “On measures of entropy and information,” in Fourth Berkeley Symposium on Mathematical Statistics and Probability (University of California, 1961), Vol. 1, pp. 547–561.
  43. R. Eisberg, R. Resnick, and J. Brown, “Quantum physics of atoms, molecules, solids, nuclei, and particles,” Phys. Today 39(3) 110 (1986). [CrossRef]
  44. P. Flandrin, R. G. Baraniuk, and O. Michel, “Time-frequency complexity and information,” in 1994 IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 1994), Vol. 3, pp. III/329–III/332.
  45. S. Benton, “Background subtraction,” http://www.sethbenton.com/background_subtraction.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited