OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 1502–1507

Analysis and design of hybrid ARROW-B plasmonic waveguides

Shruti, R. K. Sinha, and R. Bhattacharyya  »View Author Affiliations

JOSA A, Vol. 30, Issue 8, pp. 1502-1507 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (724 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A hybrid antiresonant reflecting waveguide, type B (ARROW-B) plasmonic waveguide based on the resonant coupling between a guided dielectric mode and surface plasmon polariton wave is proposed. Employing the finite element method, hybrid modes including two bound supermodes are obtained at visible frequencies by varying the environmental refractive index. We investigate the propagation characteristics of hybrid modes, where the significant change of modal power by the symmetric bound mode is observed in plasmonic waveguide coupling suitable for highly sensitive detection of bulk refractive index change. Further, anomalous dispersion is shown by the antisymmetric bound mode which leads to large group velocity dispersion of 3.165×104ps/kmnm and, thus, makes this hybrid plasmonic waveguide ideal for observation of soliton generation.

© 2013 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optical Devices

Original Manuscript: February 26, 2013
Revised Manuscript: June 11, 2013
Manuscript Accepted: June 15, 2013
Published: July 15, 2013

Shruti, R. K. Sinha, and R. Bhattacharyya, "Analysis and design of hybrid ARROW-B plasmonic waveguides," J. Opt. Soc. Am. A 30, 1502-1507 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007). [CrossRef]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef]
  4. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  5. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  6. S. A. Maier, “Plasmonics: metal nanostructures for subwavelength photonic devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1214–1220 (2006). [CrossRef]
  7. J. Homola, J. Cytroky, M. Skalsky, J. Hradilova, and P. Kolarova, “A surface plasmon resonance based integrated optical sensor,” Sens. Actuator B Chem. 38–39, 286–290 (1997). [CrossRef]
  8. J. Homola, Surface Plasmon Resonance Based Sensors, Springer Series on Chemical Sensors and Biosensors (Springer-Verlag, 2006).
  9. M. Piliarik and J. Homola, “Surface plasmon resnonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505–16517 (2009). [CrossRef]
  10. S. A. Maier, P. G. Kik, H. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguide,” Nat. Mater. 2, 229–232 (2009). [CrossRef]
  11. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plamson polaritons,” Opt. Express 13, 977–984 (2005). [CrossRef]
  12. Shruti, R. K. Sinha, T. Srivastava, and R. Bhattacharyya, “Propagation characteristics of coupled surface plasmon polaritons in PVDF slab waveguides at terahertz frequencies,” J. Opt. 15, 035001 (2013). [CrossRef]
  13. S. I. Bozhevolnvi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006). [CrossRef]
  14. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87061106 (2005). [CrossRef]
  15. M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal comers,” J. Opt. Soc. Am. B 24, 2333–2343 (2007). [CrossRef]
  16. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31, 2133–2135 (2006). [CrossRef]
  17. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long range propagation,” Nat. Photonics 2, 496–500 (2008). [CrossRef]
  18. H. Chu, Y. A. Akimov, P. Bai, and E.-P. Li, “Hybrid dielectric loaded plasmonic waveguide and wavelength selective components for efficiently controlling light at subwavelength scale,” J. Opt. Soc. Am. B 28, 2895–2901 (2011). [CrossRef]
  19. V. Dillu, Shruti, T. Srivastava, and R. K. Sinha, “Propagation characteristics of silver nanorods based compact waveguides for plasmonic circuitry,” Phys. E 48, 75–79 (2013). [CrossRef]
  20. R. Slavador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Quantum Electron. 14, 1496–1501 (2008). [CrossRef]
  21. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009). [CrossRef]
  22. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18, 12971–12979 (2010). [CrossRef]
  23. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008). [CrossRef]
  24. J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmonic polariton waveguide on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010). [CrossRef]
  25. L. Chen, X. Li, and G. Wang, “A hybrid long-range plasmonic waveguide with subwavelength confinement,” Opt. Commun. 291, 400–404 (2013). [CrossRef]
  26. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011). [CrossRef]
  27. T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992). [CrossRef]
  28. Shruti, R. K. Sinha, and R. Bhattacharyya, “Anti-resonant reflecting photonic crystal waveguides (ARRPCW): modeling and design,” Opt. Quantum Electron. 41, 181–187 (2009). [CrossRef]
  29. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986). [CrossRef]
  30. T. Baba and Y. Kokubun, “New polarization-insensitive antiresonant reflecting optical waveguide,” IEEE Photon. Technol. Lett. 1, 232–234 (1989). [CrossRef]
  31. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  32. E. N. Economou, “Surface plasmon in thin films,” Phys. Rev. 182, 539–554 (1969). [CrossRef]
  33. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981). [CrossRef]
  34. J. J. Burke and G. I. Stegeman, “Surface-polariton-like waves guided by thin lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986). [CrossRef]
  35. P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express 7329–335 (2000). [CrossRef]
  36. P. Berini, “Long-range surface plasmon polariton,” Adv. Opt. Photon. 1, 484–588 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited