## Nonquadratic penalization improves near-infrared diffuse optical tomography |

JOSA A, Vol. 30, Issue 8, pp. 1516-1523 (2013)

http://dx.doi.org/10.1364/JOSAA.30.001516

Enhanced HTML Acrobat PDF (712 KB)

### Abstract

A new approach that can easily incorporate any generic penalty function into the diffuse optical tomographic image reconstruction is introduced to show the utility of nonquadratic penalty functions. The penalty functions that were used include quadratic (

© 2013 Optical Society of America

**OCIS Codes**

(100.3010) Image processing : Image reconstruction techniques

(100.3190) Image processing : Inverse problems

(110.6960) Imaging systems : Tomography

(170.0170) Medical optics and biotechnology : Medical optics and biotechnology

(110.0113) Imaging systems : Imaging through turbid media

(110.6955) Imaging systems : Tomographic imaging

**ToC Category:**

Medical Optics and Biotechnology

**History**

Original Manuscript: March 20, 2013

Revised Manuscript: June 8, 2013

Manuscript Accepted: June 10, 2013

Published: July 15, 2013

**Virtual Issues**

Vol. 8, Iss. 9 *Virtual Journal for Biomedical Optics*

**Citation**

Ravi Prasad K. Jagannath and Phaneendra K. Yalavarthy, "Nonquadratic penalization improves near-infrared diffuse optical tomography," J. Opt. Soc. Am. A **30**, 1516-1523 (2013)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-8-1516

Sort: Year | Journal | Reset

### References

- D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001). [CrossRef]
- S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008). [CrossRef]
- A. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical tomography,” Phys. Med. Biol. 50, R1–R43 (2005). [CrossRef]
- A. Gibson and H. Dehghani, “Diffuse optical imaging,” Phil. Trans. R. Soc. A 367, 3055–3072 (2009). [CrossRef]
- S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
- S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modeling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997). [CrossRef]
- H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009). [CrossRef]
- X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49, N155–N163 (2004). [CrossRef]
- B. W. Pogue, T. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999). [CrossRef]
- P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085–2098 (2007). [CrossRef]
- S. H. Katamreddy and P. K. Yalavarthy, “Model-resolution based regularization improves near infrared diffuse optical tomography,” J. Opt. Soc. Am. A 29, 649–656 (2012). [CrossRef]
- J. W. Stayman and J. A. Fessler, “Spatially-variant roughness penalty design for uniform resolution in penalized-likelihood image reconstruction,” in Proc. of International Conference on Image Processing (ICIP), Chicago, IL, (4–7, October 1998, Vol. 2, IEEE), pp. 685–689.
- A. H. Hielscher and S. Bartel, “Use of penalty terms in gradient-based iterative reconstruction schemes for optical tomography,” J. Biomed. Opt. 6, 183–192 (2001). [CrossRef]
- P. Zwartjes and A. Gisolf, “Fourier reconstruction with sparse inversion,” Geophys. Prospect. 55, 199–221 (2007). [CrossRef]
- P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud, “Deterministic edge-preserving regularization in computed imaging,” IEEE Trans. Image Process. 6, 298–311 (1997). [CrossRef]
- R. Acar and C. R. Vogel, “Analysis of bounded variation penalty methods for ill-posed problems,” Inverse Probl. 10, 1217–1229 (1994). [CrossRef]
- M D. Sacchi, T. J. Ulrych, and C. Walker, “Interpolation and extrapolation using a high resolution discrete Fourier transform,” IEEE Trans. Signal Process. 46, 31–38 (1998). [CrossRef]
- H. Jiang, K. D. Paulsen, U. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996). [CrossRef]
- M. Schweiger, S. R. Arridge, M. Hiroaka, and D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995). [CrossRef]
- S. R. Arridge and M. Schweiger, “Photon-measurement density functions. Part 2: finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995). [CrossRef]
- H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near Infrared optical tomography using NIRFAST: algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Methods Eng. 25, 711–732 (2009). [CrossRef]
- M. Schweiger, S. R. Arridge, and I. Nissila, “Gauss–Newton method for image reconstruction in diffuse optical tomography,” Phys. Med. Biol. 50, 2365–2386 (2005). [CrossRef]
- T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001). [CrossRef]
- R. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems (Academic, 2005).
- G. Golub and U. von Matt, “Generalized cross-validation for large-scale problems,” J. Comput. Graph. Stat. 6, 1–34 (1997). [CrossRef]
- N. Nguyen, P. Milanfar, and G. Golub, “A computationally efficient superresolution image reconstruction algorithm,” IEEE Trans. Image Process. 10, 573–583 (2001). [CrossRef]
- J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003). [CrossRef]
- P. C. Hansen and D. P. O. Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14, 1487–1503 (1993). [CrossRef]
- R. P. K. Jagannath and P. K. Yalavarthy, “Minimal residual method provides optimal regularization parameter for diffuse optical tomography,” J. Biomed. Opt. 17, 106015 (2012). [CrossRef]
- J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead Simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998). [CrossRef]
- J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965). [CrossRef]
- B. W. Pogue, C. Abele, H. Kaufman, and K. D. Paulsen, “Calibration of near infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 185–193 (2000). [CrossRef]
- K. B. Flach, R. Kueres, W. Semmler, M. Kachelrie, and S. Bartling, “Constrained reconstructions for 4D intervention guidance,” Phys. Med. Biol. 58, 3283–3300 (2013). [CrossRef]
- P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043–8058 (2007). [CrossRef]
- H. Niu, P. Guo, L. Ji, Q. Zhao, and T. Jiang, “Improving image quality of diffuse optical tomography with a projection-error-based adaptive regularization method,” Opt. Express 16, 12423–12434 (2008). [CrossRef]
- N. Cao, A. Nehorai, and M. Jacob, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express 15, 13695–13708 (2007). [CrossRef]
- M. E. Eames and H. Dehghani, “Wavelength dependence of sensitivity in spectral diffuse optical imaging: effect of normalization on image reconstruction,” Opt. Express 16, 17780–17791 (2008). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.