OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 1580–1591

Texture classification using discrete Tchebichef moments

J. Víctor Marcos and Gabriel Cristóbal  »View Author Affiliations


JOSA A, Vol. 30, Issue 8, pp. 1580-1591 (2013)
http://dx.doi.org/10.1364/JOSAA.30.001580


View Full Text Article

Enhanced HTML    Acrobat PDF (666 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a method to characterize texture images based on discrete Tchebichef moments is presented. A global signature vector is derived from the moment matrix by taking into account both the magnitudes of the moments and their order. The performance of our method in several texture classification problems was compared with that achieved through other standard approaches. These include Haralick’s gray-level co-occurrence matrices, Gabor filters, and local binary patterns. An extensive texture classification study was carried out by selecting images with different contents from the Brodatz, Outex, and VisTex databases. The results show that the proposed method is able to capture the essential information about texture, showing comparable or even higher performance than conventional procedures. Thus, it can be considered as an effective and competitive technique for texture characterization.

© 2013 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.5010) Image processing : Pattern recognition
(150.1135) Machine vision : Algorithms

ToC Category:
Image Processing

History
Original Manuscript: January 30, 2013
Revised Manuscript: June 5, 2013
Manuscript Accepted: June 7, 2013
Published: July 17, 2013

Citation
J. Víctor Marcos and Gabriel Cristóbal, "Texture classification using discrete Tchebichef moments," J. Opt. Soc. Am. A 30, 1580-1591 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-8-1580


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Tuceryan and A. K. Jain, “Texture analysis,” in The Handbook of Pattern Recognition and Computer Vision, C. H. Chen, L. F. Pau, and P. S. P. Wang, eds. (World Scientific, 1993), 235–276.
  2. V. S. Bharathi and L. Ganesan, “Orthogonal moments based texture analysis of CT liver images,” Pattern Recogn. Lett. 29, 1868–1872 (2008). [CrossRef]
  3. L. K. Soh and C. Tsatsoulis, “Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices,” IEEE Trans. Geosci. Remote Sens. 37, 780–795 (1999). [CrossRef]
  4. J. Daugman, “How iris recognition works,” IEEE Trans. Circuits Syst. Video Technol. 14, 21–30 (2004). [CrossRef]
  5. T. Randen and J. H. Husoy, “Filtering for texture classification: a comparative study,” IEEE Trans. Pattern Anal. Mach. Intell. 21, 291–310 (1999). [CrossRef]
  6. J. Beck, A. Sutter, and R. Ivry, “Spatial frequency channels and perceptual grouping in texture segregation,” Comput. Graph. Image Process. 37, 299–325 (1987). [CrossRef]
  7. X. Liu and D. Wang, “Texture classification using spectral histograms,” IEEE Trans. Image Process. 12, 661–670 (2003). [CrossRef]
  8. S. Arivazhagan and L. Ganesan, “Texture classification using wavelet transform,” Pattern Recogn. Lett. 24, 1513–1521 (2003). [CrossRef]
  9. A. K. Jain and F. Farrokhnia, “Unsupervised texture segmentation using Gabor filters,” Pattern Recogn. 24, 1167–1186 (1991). [CrossRef]
  10. G. M. Haley and B. S. Manjunath, “Rotation-invariant texture classification using a complete space-frequency model,” IEEE Trans. Image Process. 8, 255–269 (1999). [CrossRef]
  11. J. Flusser, T. Suk, and B. Zitová, Moments and Moment Invariants in Pattern Recognition (Wiley, 2009).
  12. M. K. Hu, “Visual pattern recognition by moment invariants,” IEEE Trans. Inf. Theory 8, 179–187 (1962).
  13. J. Bigun and J. M. Hans du Buf, “N-folded symmetries by complex moments in Gabor space and their application to unsupervised texture segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 80–87 (1994). [CrossRef]
  14. M. Wang and A. Knoesen, “Rotation- and scale-invariant texture features based on spectral moment invariants,” J. Opt. Soc. Am. A 24, 2550–2557 (2007). [CrossRef]
  15. R. Mukundan, S. H. Ong, and P. A. Lee, “Image analysis by Tchebichef moments,” IEEE Trans. Image Process. 10, 1357–1364 (2001). [CrossRef]
  16. S. X. Liao and M. Pawlak, “On image analysis by moments,” IEEE Trans. Pattern Anal. Mach. Intell. 18, 254–266 (1996). [CrossRef]
  17. M. R. Teague, “Image analysis via the general theory of moments,” J. Opt. Soc. Am. 70, 920–930 (1980). [CrossRef]
  18. C. H. Teh and R. T. Chin, “On image analysis by the methods of moments,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 496–513 (1988). [CrossRef]
  19. B. Bayraktar, T. Bernas, J. P. Robinson, and B. Rajwa, “A numerical recipe for accurate image reconstruction from discrete orthogonal moments,” Pattern Recogn. 40, 659–669 (2007). [CrossRef]
  20. P. T. Yap, R. Paramesran, and S. H. Ong, “Image analysis by Krawtchouk moments,” IEEE Trans. Image Process. 12, 1367–1377 (2003). [CrossRef]
  21. R. Mukundan, “Some computational aspects of discrete orthonormal moments,” IEEE Trans. Image Process. 13, 1055–1059 (2004). [CrossRef]
  22. C. Y. Wee, R. Paramesran, R. Mukundan, and X. Jiang, “Image quality assessment by discrete orthogonal moments,” Pattern Recogn. 43, 4055–4068 (2010). [CrossRef]
  23. P. T. Yap and P. Raveendran, “Image focus measure based on Chebyshev moments,” IEEE Proc. Vis. Image Sig. Proc. 151, 128–136 (2004). [CrossRef]
  24. C. M. Bishop, Neural Networks for Pattern Recognition (Oxford University, 1995).
  25. K. H. Thung, R. Paramesan, and C. L. Lim, “Content-based image quality metric using similarity measure of moment vectors,” Pattern Recogn. 45, 2193–2204 (2012). [CrossRef]
  26. C. Deng, X. Gao, X. Li, and D. Tao, “A local Tchebichef moments-based robust image watermarking,” Signal Process. 89, 1531–1539 (2009). [CrossRef]
  27. K. Nakagaki and R. Mukundan, “A fast 4×4 forward discrete Tchebichef transform algorithm,” IEEE Signal Process. Lett. 14, 684–687 (2007). [CrossRef]
  28. B. Li and M. Q. H. Meng, “Computer-aided detection of bleeding regions for capsule endoscopy images,” IEEE Trans. Biomed. Eng. 56, 1032–1039 (2009). [CrossRef]
  29. K. Wu, C. Garnier, J. L. Coatrieux, and H. Shu, “A preliminary study of moment-based texture analysis for medical images,” in Proceedings of the 32nd Annual International Conference of the IEEE-EMBS (IEEE, 2010), pp. 5581–5584.
  30. K. W. See, K. S. Loke, P. A. Lee, and K. F. Loe, “Image reconstruction using various discrete orthogonal polynomials in comparison with DCT,” Appl. Math. Comput. 193, 346–359 (2007). [CrossRef]
  31. D. G. Sim, H. K. Kim, and R. H. Park, “Fast texture description and retrieval of DCT-based compressed images,” Electron. Lett. 37, 18–19 (2001). [CrossRef]
  32. J. H. Friedman, “Regularized discriminant analysis,” J. Am. Stat. Assoc. 84, 165–175 (1989). [CrossRef]
  33. A. G. Weber, “The ISC-SIPI image database,” Tech. Rep. (University of Southern California, 1997).
  34. T. Ojala, T. Mäenpää, M. Pietikäinen, J. Viertola, J. Kyllönen, and S. Huovinen, “Outex—new framework for empirical evaluation of texture analysis algorithms,” in Proceedings of the 16th International Conference on Pattern Recognition (IEEE, 2002), pp. 701–706.
  35. MIT Media Laboratory, “VisTex Vision Texture Database,” http://vismod.media.mit.edu/vismod/imagery/VisionTexture/ .
  36. R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973). [CrossRef]
  37. J. G. Daugman, “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters,” J. Opt. Soc. Am. A 2, 1160–1169 (1985). [CrossRef]
  38. J. G. Daugman, “Two-dimensional spectral analysis of cortical receptive fields profile,” Vis. Res. 20, 847–856 (1980). [CrossRef]
  39. T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002). [CrossRef]
  40. F. Bianconi and A. Fernández, “Evaluation of the effects of Gabor filter parameters on texture classification,” Pattern Recogn. 40, 3325–3335 (2007). [CrossRef]
  41. P. Gallinari, S. Thiria, F. Badran, and F. Fogelman-Soulie, “On the relations between discriminant analysis and multilayer perceptrons,” Neural Networks 4, 349–360 (1991). [CrossRef]
  42. R. Mukundan, “A new class of rotational invariants using discrete orthogonal moments,” in Proceedings of the 6th IASTED International Conference on Signal and Image Processing (IASTED, 2004), pp. 80–84.
  43. H. Zhu, H. Shu, T. Xia, L. Luo, and J. L. Coatrieux, “Translation and scale invariants of Tchebichef moments,” Pattern Recogn. 40, 2530–2542 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited