OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 1620–1626

Temporal spreading generated by diffraction in the focusing of ultrashort light pulses with perfectly conducting spherical mirrors

S. Anaya-Vera, L. García-Martínez, M. Rosete-Aguilar, N. C. Bruce, and J. Garduño-Mejia  »View Author Affiliations


JOSA A, Vol. 30, Issue 8, pp. 1620-1626 (2013)
http://dx.doi.org/10.1364/JOSAA.30.001620


View Full Text Article

Enhanced HTML    Acrobat PDF (577 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study femtosecond pulses at the focal plane of a perfectly conducting spherical mirror which is a dispersionless system, that is, it introduces no group velocity dispersion and no propagation time difference to the pulses after reflection. By using the scalar diffraction theory we will show that the neglected terms in the diffraction integral, when using the approximation of the bandwidth being smaller than the frequency of the carrier, have a significant influence on imaging if a laser pulse of a few femtoseconds is used in time-resolved imaging. The neglected terms introduce temporal spreading to extremely short pulses of a few optical cycles incident on the mirror, which avoids a fully compensated pulse, i.e., a one optical cycle pulse, at the focus of the mirror. The study in this paper also applies to refracting optical systems such as microscope objectives or lenses.

© 2013 Optical Society of America

OCIS Codes
(230.4040) Optical devices : Mirrors
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.5520) Ultrafast optics : Pulse compression
(320.5540) Ultrafast optics : Pulse shaping
(320.5550) Ultrafast optics : Pulses
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Ultrafast Optics

History
Original Manuscript: April 5, 2013
Revised Manuscript: June 18, 2013
Manuscript Accepted: June 18, 2013
Published: July 22, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Citation
S. Anaya-Vera, L. García-Martínez, M. Rosete-Aguilar, N. C. Bruce, and J. Garduño-Mejia, "Temporal spreading generated by diffraction in the focusing of ultrashort light pulses with perfectly conducting spherical mirrors," J. Opt. Soc. Am. A 30, 1620-1626 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-8-1620


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers Technology and Applications (Marcel Dekker, 2003).
  2. M. Kempe, U. Stamm, B. Wilhelmi, and W. Rudolph, “Spatial and temporal transformation of femtosecond laser pulses by lenses and lens systems,” J. Opt. Soc. Am. B 9, 1158–1165 (1992). [CrossRef]
  3. M. Kempe and W. Rudolph, “Analysis of confocal microscopy under ultrashort light-pulse illumination,” J. Opt. Soc. Am. A 10, 240–245 (1993). [CrossRef]
  4. M. Kempe and W. Rudolph, “Femtosecond pulses in the focal region of lenses,” Phys. Rev. A 48, 4721–4729 (1993). [CrossRef]
  5. M. Kempe and W. Rudolph, “Microscopy with ultrashort light pulses,” Nonlinear Opt. 7, 129–151 (1994).
  6. F. C. Estrada-Silva, J. Garduño-Mejía, and M. Rosete-Aguilar, “Third-order dispersion effects generated by non-ideal achromatic doublets on sub-20 femtosecond pulses,” J. Mod. Opt. 58, 825–834 (2011). [CrossRef]
  7. M. Rosete-Aguilar, F. C. Estrada-Silva, C. J. Román-Moreno, and R. Ortega-Martínez, “Achromatic doublets using group indices of refraction,” Laser Phys. 18, 223–231 (2008). [CrossRef]
  8. G. Tempea, B. Povazay, A. Assion, A. Isemann, W. Pervak, M. Kempe, A. Stingl, and W. Dresler, “Undistorted delivery of sub-15 fs-pulses via high-numerical-aperture microscope objectives,” Proc. SPIE 6442, 1–5 (2007).
  9. Z. Bor, “Distortion of femtosecond laser pulses in lenses and lens systems,” J. Mod. Opt. 35, 1907–1918 (1988). [CrossRef]
  10. Z. Bor, “Distortion of femtosecond laser pulses in lenses,” Opt. Lett. 14, 119–121 (1989). [CrossRef]
  11. Z. Bor, Z. Gogolak, and G. Szabo, “Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry,” Opt. Lett. 14, 862–864 (1989). [CrossRef]
  12. Z. Bor and Z. L. Horvath, “Distortion of a 6 fs pulse in the focus of a BK7 lens,” in Ultrafast Phenomena VIII, J. L. Martin, A. Migus, G. A. Mourou, and A. H. Zewail, eds., Vol. 55 of Springer Series in Chemical Physics (Springer-Verlag, 1993).
  13. Z. Bor and Z. L. Horvath, “How to select a lens for focusing of femtosecond pulses,” Braz. J. Phys. 26, 516–519 (1996).
  14. L. García-Martínez, M. Rosete-Aguilar, and J. Garduño-Mejía, “Gauss-Legendre quadrature method used to evaluate the spatio-temporal intensity of ultrashort pulses in the focal region of lenses,” Appl. Opt. 51, 306–315 (2012). [CrossRef]
  15. M. Kempe and W. Rudolph, “Impact of chromatic and spherical aberration on the focusing of ultrashort light pulses by lenses,” Opt. Lett. 18, 137–139 (1993). [CrossRef]
  16. G. O. Mattei and M. A. Gil, “Spherical aberration in spatial and temporal transforming lenses of femtosecond laser pulses,” Appl. Opt. 38, 1058–1064 (1999). [CrossRef]
  17. D. Zalvidea and E. E. Sicre, “Ultrashort light pulse propagation in aberrant optical systems: spatio-temporal analysis,” J. Opt. A 5, S310–S314 (2003).
  18. Z. L. Horvath, A. P. Kovacs, and Z. Bor, “Distortion of ultrashort pulses caused by aberrations,” Springer Ser. Chem. Phys. 88, 220–222 (2007). [CrossRef]
  19. K. Mecseki, A. P. Kovacs, and Z. L. Horvath, “Measurement of pulse front distortion caused by aberrations using spectral interferometry,” in Light at Extreme Intensities-LEI, D. Dumitras, ed. (American Institute of Physics, 2009), paper CP1228.
  20. M. A. González-Galicia, M. Rosete-Aguilar, J. Garduño-Mejía, N. C. Bruce, and R. Ortega-Martínez, “Effects of primary spherical aberration, coma, astigmatism and field curvature on the focusing of ultrashort pulses: homogenous illumination,” J. Opt. Soc. Am. A 28, 1979–1989 (2011). [CrossRef]
  21. M. A. González-Galicia, J. Garduño-Mejía, M. Rosete-Aguilar, N. C. Bruce, and R. Ortega-Martínez, “Effects of primary spherical aberration, coma, astigmatism and field curvature on the focusing of ultrashort pulses: Gaussian illumination and experiment,” J. Opt. Soc. Am. A 28, 1990–1994 (2011). [CrossRef]
  22. Zs. Bor and Z. L. Horváth, “Distortion of femtosecond pulses in lenses. Wave optical description,” Opt. Commun. 94, 249–258 (1992). [CrossRef]
  23. Z. L. Horvath, Z. Benko, A. P. Kovacs, H. A. Hazim, and Z. Bor, “Propagation of femtosecond pulses through lenses, gratings, and slits,” Opt. Eng. 32, 2491–2500 (1993). [CrossRef]
  24. Z. L. Horvath and Z. Bor, “Focusing of femtosecond pulses having Gaussian spatial distribution,” Opt. Commun. 100, 6–12 (1993). [CrossRef]
  25. Z. L. Horvath and Z. Bor, “Behaviour of femtosecond pulses on the optical axis of a lens. Analytical description,” Opt. Commun. 108, 333–342 (1994). [CrossRef]
  26. Z. L. Horvath and Z. Bor, “Diffraction of short pulses with boundary diffraction wave theory,” Phys. Rev. E 63, 026601 (2001). [CrossRef]
  27. Z. L. Horvath, J. Klebniczki, G. Kurdi, and A. P. Kovacs, “Experimental investigation of the boundary wave pulse,” Opt. Commun. 239, 243–250 (2004). [CrossRef]
  28. D. Meschulach, D. Yelin, and Y. Silberberg, “Adaptive ultrashort pulse compression and shaping,” Opt. Commun. 138, 345–348 (1997). [CrossRef]
  29. J. Jasapara and W. Rudolph, “Characterization of sub-10 fs pulse focusing with high-numerical-aperture microscope objectives,” Opt. Lett. 24, 777–779 (1999). [CrossRef]
  30. T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B 70, S119–S124 (2000). [CrossRef]
  31. J. Garduño-Mejía, A. Greenaway, and D. T. Reid, “Designer femtosecond pulses using adaptive optics,” Opt. Express 11, 2030–2040 (2003). [CrossRef]
  32. J. Garduño-Mejía, A. Greenaway, and D. T. Reid, “Programmable spectral phase control of femtosecond pulses using adaptive optics and real-time pulse measurement,” J. Opt. Soc. Am. B 21, 833–843 (2004). [CrossRef]
  33. V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29, 775–777 (2004). [CrossRef]
  34. B. W. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750–759 (2006). [CrossRef]
  35. B. Xu, Y. Coello, V. V. Lozovoy, D. A. Harris, and M. Dantus, “Pulse shaping of octave spanning femtosecond laser pulses,” Opt. Express 14, 10939–10944 (2006). [CrossRef]
  36. M. Dantus, V. V. Lozovoy, and I. Pastirk, “Ultrafast optical systems,” Laser Focus World 43, 1–4 (2007).
  37. Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C. H. Tseng, T. Weinacht, and M. Dantus, “Intereference without an interferometer: a different approach to measuring, compressing and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25, A140–A149 (2008). [CrossRef]
  38. Z. L. Horvath, J. Klebniczki, A. P. Kovacs, and G. Kurdi, “Observation of the boundary wave pulse,” in Proceedings of the Conference on Lasers and Electro-Optics (IEEE, 2005), p. 389.
  39. M. Gu and C. J. R. Sheppard, “Analysis of confocal microscopy under ultrashort light-pulse illumination: comment,” J. Opt. Soc. Am. A 11, 2742–2743 (1994). [CrossRef]
  40. J. C. Diels and W. Rudolph, “Femtosecond optics,” in Ultrashort Laser Pulse Phenomena, 2nd ed. (Elsevier, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited