OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 1654–1660

Efficient three-dimensional ray-tracing model for electromagnetic propagation prediction in complex indoor environments

Z.-Y. Liu, L.-X. Guo, and X. Meng  »View Author Affiliations

JOSA A, Vol. 30, Issue 8, pp. 1654-1660 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A three-dimensional ray-tracing model for the use of the uniform theory of diffraction and geometrical optics in radio channel characterizations of indoor environments is presented in this paper. Based on the environment information chosen by the proposed modeling approach, the model is effectively applied by utilizing a technique in which multiple reflections, transmissions, and diffractions are considered via the ray-path classification into four different categories. Ray paths belonging to each ray category are determined by using different methods. Our theoretical results are compared with narrowband and wideband measurements. The good agreement with these measurements indicates that our prediction model works well for such indoor communication applications.

© 2013 Optical Society of America

OCIS Codes
(080.1510) Geometric optics : Propagation methods
(290.4210) Scattering : Multiple scattering
(350.5500) Other areas of optics : Propagation
(080.5692) Geometric optics : Ray trajectories in inhomogeneous media
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Geometric Optics

Original Manuscript: May 28, 2013
Revised Manuscript: June 21, 2013
Manuscript Accepted: June 21, 2013
Published: July 24, 2013

Z.-Y. Liu, L.-X. Guo, and X. Meng, "Efficient three-dimensional ray-tracing model for electromagnetic propagation prediction in complex indoor environments," J. Opt. Soc. Am. A 30, 1654-1660 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. E. Athanasiadou and A. R. Nix, “A novel 3-D indoor ray-tracing propagation model: the path generator and evaluation of narrow-band and wide-band predictions,” IEEE Trans. Veh. Technol. 49, 1152–1168 (2000). [CrossRef]
  2. C. Yang and B. C. Wu, “A ray-tracing method for modeling indoor wave propagation and penetration,” IEEE Trans. Antennas Propag. 46, 907–919 (1998). [CrossRef]
  3. V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900 MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001). [CrossRef]
  4. S. Grubisic, W. P. Carpes, and J. P. A. Bastos, “Optimization model for antenna positioning in indoor environments using 2-D ray-tracing technique associated to a real-coded genetic algorithm,” IEEE Trans. Magn. 45, 1626–1629 (2009). [CrossRef]
  5. J. H. Jo, M. A. Ingram, and N. Jayant, “Deterministic angle clustering in rectangular buildings based on ray-tracing,” IEEE Trans. Commun. 53, 1047–1052 (2005).
  6. K. A. Remley, H. R. Anderson, and A. Weisshar, “Improving the accuracy of ray-tracing techniques for indoor propagation modeling,” IEEE Trans. Veh. Technol. 49, 2350–2358 (2000). [CrossRef]
  7. Z. Ji, B.-H. Li, H.-X. Wang, H.-Y. Chen, and Y.-G. Zhau, “An improved ray-tracing propagation model for predicting path loss on single floors,” Microwave Opt. Technol. Lett. 22, 39–41 (1999). [CrossRef]
  8. W. K. Tam and V. N. Tran, “Multi-ray propagation model for indoor wireless communications,” Electron. Lett. 32, 135–137 (1996). [CrossRef]
  9. K. R. Chang and H. T. Kim, “Improvement of the computation efficiency for a ray-launching model,” IEE Proc. Microw. Antennas Propag. 145, 303–308 (1998). [CrossRef]
  10. Z. Ji, B. Li, H. Wang, H. Chen, and T. K. Sarkar, “Efficient ray-tracing methods for propagation prediction for indoor wireless communications,” IEEE Antennas Propag. Mag. 43, 41–49 (2001). [CrossRef]
  11. K. Rizk, J. F. Wagen, and F. Gardiol, “Two-dimensional ray-tracing modeling for propagation in microcellular environments,” IEEE Trans. Veh. Technol. 46, 508–518 (1997). [CrossRef]
  12. H. M. El-Sallabi and P. Vainikainen, “Improvements to diffraction coefficient for non-perfectly conducting wedges,” IEEE Trans. Antennas Propag. 53, 3105–3109 (2005). [CrossRef]
  13. A. Toscano, F. Bilotti, and L. Vegni, “Fast ray-tracing technique for electromagnetic field prediction in mobile communications,” IEEE Trans. Magn. 39, 1238–1241 (2003). [CrossRef]
  14. T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45, 51–82 (2003). [CrossRef]
  15. M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43, 27–37 (2001). [CrossRef]
  16. Z. Y. Liu and L. X. Guo, “A quasi three-dimensional ray tracing method based on the virtual source tree in urban microcellular environments,” Prog. Electromagn. Res. 118, 397–414 (2011). [CrossRef]
  17. F. A. Agelet, A. Formella, J. M. Hernando Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000). [CrossRef]
  18. F. A. Agelet, F. P. Fontan, and A. Formella, “Fast ray tracing for microcellular and indoor environments,” IEEE Trans. Magn. 33, 1484–1487 (1997). [CrossRef]
  19. D. N. Schettino, F. J. S. Moreira, and C. G. Rego, “Efficient ray tracing for radio channel characterization of urban scenarios,” IEEE Trans. Magn. 43, 1305–1308 (2007). [CrossRef]
  20. K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007). [CrossRef]
  21. S. Y. Seidel and T. S. Rappaport, “Site-specific propagation prediction for wireless in-building personal communication system design,” IEEE Trans. Veh. Technol. 43, 879–891 (1994). [CrossRef]
  22. S. Y. Tan and H. S. Tan, “A microcellular communications propagation model based on the uniform theory of diffraction and multiple image theory,” IEEE Trans. Antennas Propag. 44, 1317–1326 (1996). [CrossRef]
  23. G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972). [CrossRef]
  24. F. S. de Adana, O. Gutierrez Blanco, I. G. Diego, J. Perez Arriaga, and M. F. Catedra, “Propagation model based on ray tracing for the design of personal communication systems in indoor environments,” IEEE Trans. Veh. Technol. 49, 2105–2112 (2000). [CrossRef]
  25. M. C. Lawton and J. P. McGeehan, “The application of a deterministic ray launching algorithm for the prediction of radio channel characteristics in small-cell environments,” IEEE Trans. Veh. Technol. 43, 955–969 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited