## Electromagnetic scattering by a uniaxial anisotropic sphere located in an off-axis Bessel beam |

JOSA A, Vol. 30, Issue 8, pp. 1661-1669 (2013)

http://dx.doi.org/10.1364/JOSAA.30.001661

Enhanced HTML Acrobat PDF (1807 KB)

### Abstract

Electromagnetic scattering of a zero-order Bessel beam by an anisotropic
spherical particle in the off-axis configuration is investigated. Based on the
spherical vector wave functions, the expansion expression of the zero-order
Bessel beam is derived, and its convergence is numerically discussed in detail.
Utilizing the tangential continuity of the electromagnetic fields, the
expressions of scattering coefficients are given. The effects of the conical
angle of the wave vector components of the zero-order Bessel beam, the ratio of
the radius of the sphere to the central spot radius of the zero-order Bessel
beam, the shift of the beam waist center position along both the

© 2013 Optical Society of America

**OCIS Codes**

(140.3430) Lasers and laser optics : Laser theory

(160.1190) Materials : Anisotropic optical materials

(290.5850) Scattering : Scattering, particles

**ToC Category:**

Scattering

**History**

Original Manuscript: April 17, 2013

Revised Manuscript: July 1, 2013

Manuscript Accepted: July 1, 2013

Published: July 24, 2013

**Citation**

Tan Qu, Zhen-Sen Wu, Qing-Chao Shang, Zheng-Jun Li, and Lu Bai, "Electromagnetic scattering by a uniaxial anisotropic sphere located in an off-axis Bessel beam," J. Opt. Soc. Am. A **30**, 1661-1669 (2013)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-8-1661

Sort: Year | Journal | Reset

### References

- A. Doicu and T. Wriedt, “Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory for spherical vector wave functions,” Appl. Opt. 36, 2971–2978 (1997). [CrossRef]
- K. A. Fuller, Electromagnetic Scattering by Spherical Particles (University of Alabama Huntsville, 2000), pp. 3–6.
- J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994). [CrossRef]
- E. G. Abramochkin and V. G. Volostnikov, “Generalized Gaussian beams,” J. Opt. A 6, S157–S161 (2004). [CrossRef]
- G. Gréhan, B. Maheu, and G. Gouesbet, “Scattering of laser beam by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986). [CrossRef]
- Z. J. Li, Z. S. Wu, and H. Y. Li, “Analysis of electromagnetic scattering by uniaxial anisotropic bispheres,” J. Opt. Soc. Am. A 28, 118–125 (2011). [CrossRef]
- G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, 2011), pp. 37–75.
- D. Ding and X. Liu, “Approximate description for Bessel, Bessel-Gauss, and Gaussian beams with finite aperture,” J. Opt. Soc. Am. A 16, 1286–1293 (1999). [CrossRef]
- V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, and G. S. Spagnolo, “Generalized Bessel-Gauss beams,” J. Mod. Opt. 43, 1155–1166 (1996). [CrossRef]
- J. Durnin, “Exact solution for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
- J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941), pp. 399–413.
- F. G. Mitri, “Gegenbauer expansion to model the incident wave-field of a high-order Bessel vortex beam in spherical coordinates,” Ultrasonics 50, 541–543 (2010). [CrossRef]
- X. Ma and E. Li, “Scattering of an unpolarized Bessel beam by spheres,” Chin. Opt. Lett. 8, 1195–1198 (2010). [CrossRef]
- R. Li, K. Ren, X. E. Han, Z. Wu, L. Guo, and S. Gong, “Analysis of radiation pressure force exerted on a biological cell induced by high-order Bessel beams using Debye series,” J. Quant. Spectrosc. Radiat. Transfer 126, 69–77 (2013). [CrossRef]
- F. G. Mitri and G. T. Silva, “Off-axial acoustic scattering of a high-order Bessel vortex beam by a rigid sphere,” Wave Motion 48, 392–400 (2011). [CrossRef]
- J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989). [CrossRef]
- M. Xiubo and L. Enbang, “Scattering of unpolarized Bessel-Gauss beam by a sphere,” Acta Optica Sinica 32, 0829002 (2012). [CrossRef]
- F. G. Mitri, “Arbitrary scattering of an electromagnetic zero-order Bessel beam by a dielectric sphere,” Opt. Lett. 36, 766–768 (2011). [CrossRef]
- F. G. Mitri, “Electromagnetic wave scattering of a higher-order Bessel vortex beam by a dielectric sphere,” IEEE Trans. Antennas Propag. 59, 4375–4379 (2011). [CrossRef]
- P. L. Marston, “Scattering of a Bessel beam by a sphere,” J. Acoust. Soc. Am. 121, 753–758 (2007). [CrossRef]
- F. G. Mitri, “Linear axial scattering of an acoustical high-order Bessel trigonometric beam by compressible soft fluid spheres,” J. Appl. Phys. 109, 014916 (2011). [CrossRef]
- F. G. Mitri, “Arbitrary scattering of an acoustical high-order Bessel trigonometric (non-vortex) beam by a compressible soft fluid sphere,” Ultrasonics 53, 956–961 (2013). [CrossRef]
- F. G. Mitri, “Interaction of a nondiffracting high-order Bessel (vortex) beam of fractional type α and integer order m with a rigid sphere:linear acoustic scattering and net instantaneous axial force,” IEEE Trans Ultrason. Ferroelectr. Freq. Control 57, 395–404 (2010). [CrossRef]
- F. G. Mitri, “Acoustic beam interaction with a rigid sphere: the case of a first-order non-diffracting Bessel trigonometric beam,” J. Sound Vib. 330, 6053–6060 (2011). [CrossRef]
- G. T. Silva, “Off-axis scattering of an ultrasound Bessel beam by a sphere,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 298–304 (2011). [CrossRef]
- F. G. Mitri, “Equivalence of expressions for the acoustic scattering of a progressive higher-order Bessel beam by an elastic sphere,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1100–1103 (2009). [CrossRef]
- L. Haiying, W. Zhensen, S. Mao, L. Bai, and C. Huang, “Scattering of Hermite-Gaussian beam by plasma sphere,” in Proceedings of International Conference on Microwave and Millimeter Wave Technology (ICMMT) (IEEE, 2010), pp. 1405–1408.
- Z. S. Wu, Z. J. Li, H. Li, Q. K. Yuan, and H. Y. Li, “Off-axis Gaussian beam scattering by an anisotropic coated sphere,” IEEE Trans. Antennas Propag. 59, 4740–4748 (2011). [CrossRef]
- Y. L. Geng, “Scattering of a plane wave by an anisotropic ferrite-coated conducting sphere,” IET Microw. Antennas Propag. 2, 158–162 (2008). [CrossRef]
- B. Stout, M. Nevière, and E. Popov, “Mie scattering by an anisotropic object. Part 1. Homogeneous sphere,” J. Opt. Soc. Am. A 23, 1111–1123 (2006). [CrossRef]
- K. L. Wong and H. T. Chen, “Electromagnetic scattering by a uniaxially anisotropic sphere,” IEE Proc. 139, 314–318 (1992). [CrossRef]
- Y. Geng, X. Wu, and L.-W. Li, “Analysis of electromagnetic scattering by a plasma anisotropic sphere,” Radio Sci. 38(6), 12 (2003). [CrossRef]
- T. Cizmar, V. Kollarova, Z. Bouchal, and P. Zemanek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8(43), 1–23 (2006). [CrossRef]
- F. G. Mitri, “Three-dimensional vectorial analysis of an electromagnetic non-diffracting high-order Bessel trigonometric beam,” Wave Motion 49, 561–568 (2012). [CrossRef]
- S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991). [CrossRef]
- L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley-Interscience, 1985), pp. 168–177.
- K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998). [CrossRef]
- C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998), pp. 88–92.
- Z. J. Li, “Scattering of anisotropic particle system from plane wave/Gaussian beam,” Ph.D. thesis (Xi’dian University, 2012) ( http://cdmd.cnki.com.cn/Article/CDMD-10701-1013114292.htm ).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

### Figures

Fig. 1. |
Fig. 2. |
Fig. 3. |

Fig. 4. |
Fig. 5. |
Fig. 6. |

Fig. 7. |
Fig. 8. |
Fig. 9. |

Fig. 10. |
Fig. 11. |
Fig. 12. |

Fig. 13. |
||

« Previous Article | Next Article »

OSA is a member of CrossRef.