OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 1661–1669

Electromagnetic scattering by a uniaxial anisotropic sphere located in an off-axis Bessel beam

Tan Qu, Zhen-Sen Wu, Qing-Chao Shang, Zheng-Jun Li, and Lu Bai  »View Author Affiliations

JOSA A, Vol. 30, Issue 8, pp. 1661-1669 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1807 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electromagnetic scattering of a zero-order Bessel beam by an anisotropic spherical particle in the off-axis configuration is investigated. Based on the spherical vector wave functions, the expansion expression of the zero-order Bessel beam is derived, and its convergence is numerically discussed in detail. Utilizing the tangential continuity of the electromagnetic fields, the expressions of scattering coefficients are given. The effects of the conical angle of the wave vector components of the zero-order Bessel beam, the ratio of the radius of the sphere to the central spot radius of the zero-order Bessel beam, the shift of the beam waist center position along both the x and y axes, the permittivity and permeability tensor elements, and the loss of the sphere on the radar cross section (RCS) are numerically analyzed. It is revealed that the maximum RCS appears in the conical direction or neighboring direction when the sphere is illuminated by a zero-order Bessel beam. Furthermore, the RCS will decrease and the symmetry is broken with the shift of the beam waist center.

© 2013 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(160.1190) Materials : Anisotropic optical materials
(290.5850) Scattering : Scattering, particles

ToC Category:

Original Manuscript: April 17, 2013
Revised Manuscript: July 1, 2013
Manuscript Accepted: July 1, 2013
Published: July 24, 2013

Tan Qu, Zhen-Sen Wu, Qing-Chao Shang, Zheng-Jun Li, and Lu Bai, "Electromagnetic scattering by a uniaxial anisotropic sphere located in an off-axis Bessel beam," J. Opt. Soc. Am. A 30, 1661-1669 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Doicu and T. Wriedt, “Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory for spherical vector wave functions,” Appl. Opt. 36, 2971–2978 (1997). [CrossRef]
  2. K. A. Fuller, Electromagnetic Scattering by Spherical Particles (University of Alabama Huntsville, 2000), pp. 3–6.
  3. J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994). [CrossRef]
  4. E. G. Abramochkin and V. G. Volostnikov, “Generalized Gaussian beams,” J. Opt. A 6, S157–S161 (2004). [CrossRef]
  5. G. Gréhan, B. Maheu, and G. Gouesbet, “Scattering of laser beam by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986). [CrossRef]
  6. Z. J. Li, Z. S. Wu, and H. Y. Li, “Analysis of electromagnetic scattering by uniaxial anisotropic bispheres,” J. Opt. Soc. Am. A 28, 118–125 (2011). [CrossRef]
  7. G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, 2011), pp. 37–75.
  8. D. Ding and X. Liu, “Approximate description for Bessel, Bessel-Gauss, and Gaussian beams with finite aperture,” J. Opt. Soc. Am. A 16, 1286–1293 (1999). [CrossRef]
  9. V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, and G. S. Spagnolo, “Generalized Bessel-Gauss beams,” J. Mod. Opt. 43, 1155–1166 (1996). [CrossRef]
  10. J. Durnin, “Exact solution for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
  11. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941), pp. 399–413.
  12. F. G. Mitri, “Gegenbauer expansion to model the incident wave-field of a high-order Bessel vortex beam in spherical coordinates,” Ultrasonics 50, 541–543 (2010). [CrossRef]
  13. X. Ma and E. Li, “Scattering of an unpolarized Bessel beam by spheres,” Chin. Opt. Lett. 8, 1195–1198 (2010). [CrossRef]
  14. R. Li, K. Ren, X. E. Han, Z. Wu, L. Guo, and S. Gong, “Analysis of radiation pressure force exerted on a biological cell induced by high-order Bessel beams using Debye series,” J. Quant. Spectrosc. Radiat. Transfer 126, 69–77 (2013). [CrossRef]
  15. F. G. Mitri and G. T. Silva, “Off-axial acoustic scattering of a high-order Bessel vortex beam by a rigid sphere,” Wave Motion 48, 392–400 (2011). [CrossRef]
  16. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989). [CrossRef]
  17. M. Xiubo and L. Enbang, “Scattering of unpolarized Bessel-Gauss beam by a sphere,” Acta Optica Sinica 32, 0829002 (2012). [CrossRef]
  18. F. G. Mitri, “Arbitrary scattering of an electromagnetic zero-order Bessel beam by a dielectric sphere,” Opt. Lett. 36, 766–768 (2011). [CrossRef]
  19. F. G. Mitri, “Electromagnetic wave scattering of a higher-order Bessel vortex beam by a dielectric sphere,” IEEE Trans. Antennas Propag. 59, 4375–4379 (2011). [CrossRef]
  20. P. L. Marston, “Scattering of a Bessel beam by a sphere,” J. Acoust. Soc. Am. 121, 753–758 (2007). [CrossRef]
  21. F. G. Mitri, “Linear axial scattering of an acoustical high-order Bessel trigonometric beam by compressible soft fluid spheres,” J. Appl. Phys. 109, 014916 (2011). [CrossRef]
  22. F. G. Mitri, “Arbitrary scattering of an acoustical high-order Bessel trigonometric (non-vortex) beam by a compressible soft fluid sphere,” Ultrasonics 53, 956–961 (2013). [CrossRef]
  23. F. G. Mitri, “Interaction of a nondiffracting high-order Bessel (vortex) beam of fractional type α and integer order m with a rigid sphere:linear acoustic scattering and net instantaneous axial force,” IEEE Trans Ultrason. Ferroelectr. Freq. Control 57, 395–404 (2010). [CrossRef]
  24. F. G. Mitri, “Acoustic beam interaction with a rigid sphere: the case of a first-order non-diffracting Bessel trigonometric beam,” J. Sound Vib. 330, 6053–6060 (2011). [CrossRef]
  25. G. T. Silva, “Off-axis scattering of an ultrasound Bessel beam by a sphere,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 298–304 (2011). [CrossRef]
  26. F. G. Mitri, “Equivalence of expressions for the acoustic scattering of a progressive higher-order Bessel beam by an elastic sphere,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1100–1103 (2009). [CrossRef]
  27. L. Haiying, W. Zhensen, S. Mao, L. Bai, and C. Huang, “Scattering of Hermite-Gaussian beam by plasma sphere,” in Proceedings of International Conference on Microwave and Millimeter Wave Technology (ICMMT) (IEEE, 2010), pp. 1405–1408.
  28. Z. S. Wu, Z. J. Li, H. Li, Q. K. Yuan, and H. Y. Li, “Off-axis Gaussian beam scattering by an anisotropic coated sphere,” IEEE Trans. Antennas Propag. 59, 4740–4748 (2011). [CrossRef]
  29. Y. L. Geng, “Scattering of a plane wave by an anisotropic ferrite-coated conducting sphere,” IET Microw. Antennas Propag. 2, 158–162 (2008). [CrossRef]
  30. B. Stout, M. Nevière, and E. Popov, “Mie scattering by an anisotropic object. Part 1. Homogeneous sphere,” J. Opt. Soc. Am. A 23, 1111–1123 (2006). [CrossRef]
  31. K. L. Wong and H. T. Chen, “Electromagnetic scattering by a uniaxially anisotropic sphere,” IEE Proc. 139, 314–318 (1992). [CrossRef]
  32. Y. Geng, X. Wu, and L.-W. Li, “Analysis of electromagnetic scattering by a plasma anisotropic sphere,” Radio Sci. 38(6), 12 (2003). [CrossRef]
  33. T. Cizmar, V. Kollarova, Z. Bouchal, and P. Zemanek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8(43), 1–23 (2006). [CrossRef]
  34. F. G. Mitri, “Three-dimensional vectorial analysis of an electromagnetic non-diffracting high-order Bessel trigonometric beam,” Wave Motion 49, 561–568 (2012). [CrossRef]
  35. S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991). [CrossRef]
  36. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley-Interscience, 1985), pp. 168–177.
  37. K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998). [CrossRef]
  38. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998), pp. 88–92.
  39. Z. J. Li, “Scattering of anisotropic particle system from plane wave/Gaussian beam,” Ph.D. thesis (Xi’dian University, 2012) ( http://cdmd.cnki.com.cn/Article/CDMD-10701-1013114292.htm ).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited