OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 1670–1679

Compensation of the two-stage phase-shifting algorithms in the presence of detuning and harmonics

Alejandro Téllez-Quiñones, Daniel Malacara-Doblado, and Jorge García-Márquez  »View Author Affiliations


JOSA A, Vol. 30, Issue 8, pp. 1670-1679 (2013)
http://dx.doi.org/10.1364/JOSAA.30.001670


View Full Text Article

Acrobat PDF (1127 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Fourier analysis of two-stage phase-shifting (TSPS) algorithms is growing in interest as a research topic, specifically, the algorithm’s insensitivity properties to various error sources. The main motivation of this paper is to propose TSPS algorithms that perform well in the face of detuning and harmonics for each of the two sets of interferograms with different or equal reference frequencies. TSPS algorithms based on the development of generalized equations consider both the frequency sampling functions that represent them and nonconstant phase shifts.

© 2013 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 23, 2013
Revised Manuscript: June 30, 2013
Manuscript Accepted: July 1, 2013
Published: July 24, 2013

Citation
Alejandro Téllez-Quiñones, Daniel Malacara-Doblado, and Jorge García-Márquez, "Compensation of the two-stage phase-shifting algorithms in the presence of detuning and harmonics," J. Opt. Soc. Am. A 30, 1670-1679 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-8-1670


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Miranda, V. Álvarez-Valado, B. V. Dorrío, and H. González-Jorge, “Error propagation in differential phase evaluation,” Opt. Express 18, 3199–3209 (2010). [CrossRef]
  2. M. Miranda and B. V. Dorrío, “Monte Carlo based techniques of two-stage phase shifting algorithms,” Opt. Lasers Eng. 49, 439–444 (2011). [CrossRef]
  3. M. Miranda and B. V. Dorrío, “Fourier analysis of two-stage phase-shifting algorithms,” J. Opt. Soc. Am. A 27, 276–285 (2010). [CrossRef]
  4. M. Miranda, B. V. Dorrío, J. Blanco, J. Diz-Bugarin, and F. Ribas, “Characteristic polynomial theory of two-stage phase shifting algorithms,” Opt. Lasers Eng. 50, 522–528 (2012). [CrossRef]
  5. M. Miranda, B. V. Dorrío, J. Blanci, and J. Diz-Bugarin, “Linear error analysis of differential phase shifting algorithms,” Optik 124, 710–717 (2013). [CrossRef]
  6. Q. Kemao, H. S. Seah, and A. K. Asundi, “Algorithm for directly retrieving the phase difference: a generalization,” Opt. Eng. 42, 1721–1724 (2003). [CrossRef]
  7. M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44, 6861–6868 (2005). [CrossRef]
  8. N. I. Toto-Arellano, G. Rodriguez-Zurita, C. Meneses-Fabian, and J. F. Vazquez-Castillo, “Phase shifts in the Fourier spectra of phase gratings and phase grids: an application for one-shot phase-shifting interferometry,” Opt. Express 16, 19330–19341 (2008). [CrossRef]
  9. M. Servín, D. Malacara, J. L. Marroquín, and F. J. Cuevas, “Complex linear filters for phase shifting with very low detuning sensitivity,” J. Mod. Opt. 44, 1269–1278 (1997). [CrossRef]
  10. D. Malacara-Doblado and B. V. Dorrío, “Family of detuning-insensitive phase-shifting algorithms,” J. Opt. Soc. Am. A 17, 1857–1863 (2000). [CrossRef]
  11. K. Hibino, B. F. Oreb, D. I. Farrant, and K. G. Larkin, “Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts,” J. Opt. Soc. Am. A 14, 918–930 (1997). [CrossRef]
  12. J. Schmit and K. Creath, “Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry,” Appl. Opt. 34, 3610–3619 (1995). [CrossRef]
  13. Y. Surrel, “Design of algorithms for phase measurement by the use of phase stepping,” Appl. Opt. 35, 51–60 (1996). [CrossRef]
  14. Y. Surrel, “Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts: comment,” J. Opt. Soc. Am. A 15, 1227–1233 (1998). [CrossRef]
  15. A. Téllez-Quiñones, D. Malacara-Doblado, and J. García-Márquez, “Basic Fourier properties for generalized phase shifting and some interesting detuning insensitive algorithms,” Appl. Opt. 50, 4083–4090 (2011). [CrossRef]
  16. A. Téllez-Quiñones and D. Malacara-Doblado, “Phase recovering without phase unwrapping in phase-shifting interferometry by cubic and average interpolation,” Appl. Opt. 51, 1257–1265 (2012). [CrossRef]
  17. A. Téllez-Quiñones, D. Malacara-Doblado, and J. García-Márquez, “Phase-shifting algorithms for a finite number of harmonics: first order analysis by solving linear systems,” J. Opt. Soc. Am. A 29, 431–441 (2012). [CrossRef]
  18. G. Lai and T. Yatagai, “Generalized phase-shifting interferometry,” J. Opt. Soc. Am. A 8, 822–826 (1991). [CrossRef]
  19. P. Gao, B. Yao, N. Lindlein, K. Mantel, I. Harder, and E. Geist, “Phase-shift extraction for generalized phase-shifting interferometry,” Opt. Lett. 34, 3553–3555 (2009). [CrossRef]
  20. L. Z. Cai, Q. Liu, and X. L. Yang, “Generalized phase-shifting interferometry with arbitrary unknown phase steps for diffraction objects,” Opt. Lett. 29, 183–185 (2004). [CrossRef]
  21. G. Páez and M. Strojnik, “Phase-shifted interferometry without phase unwrapping: reconstruction of a decentered wave front,” J. Opt. Soc. Am. A 16, 475–480 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited