OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 1703–1713

Optical modeling techniques for multimode horn-coupled power detectors for submillimeter and far-infrared astronomy

Christopher N. Thomas and Stafford Withington  »View Author Affiliations


JOSA A, Vol. 30, Issue 8, pp. 1703-1713 (2013)
http://dx.doi.org/10.1364/JOSAA.30.001703


View Full Text Article

Enhanced HTML    Acrobat PDF (1044 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An important class of detectors for the submillimeter and far-infrared uses a multimode horn to couple incident radiation into an absorbing film made from a thin conductor. We consider how to model the full, partially coherent, optical behavior of these multimode detectors using extensions of mode-matching techniques. We validate modeling the absorber as a resistive sheet, and demonstrate the equivalence of mode-matching and Green’s function methods for calculating the scattering matrix representation of the film. Finally, we show how the scattering matrix of the film can be cascaded with those of the other components, as determined by mode matching, so as to calculate the overall optical response of the detector. Simulations are presented of the optical behavior of a square absorbing film in a circular waveguide.

© 2013 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(110.4980) Imaging systems : Partial coherence in imaging
(110.6770) Imaging systems : Telescopes
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Detectors

History
Original Manuscript: April 26, 2013
Revised Manuscript: July 8, 2013
Manuscript Accepted: July 8, 2013
Published: July 31, 2013

Citation
Christopher N. Thomas and Stafford Withington, "Optical modeling techniques for multimode horn-coupled power detectors for submillimeter and far-infrared astronomy," J. Opt. Soc. Am. A 30, 1703-1713 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-8-1703


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Murphy, T. Peacocke, B. Maffei, I. McAuley, F. Noviello, V. Yurchenko, P. Ade, G. Savini, J-M Lamarre, J. Brossard, R. Colgan, E. Gleeson, A. E. Lange, Y. Longval, G. Pisano, J-L Puget, I. Ristorcelli, R. Sudiwala, and R. J. Wylde, “Multi-mode horn design and beam characteristics for the Planck satellite,” J. Instrum. 5, T04001 (2010). [CrossRef]
  2. A. Kogut, D. T. Chuss, J. Dotson, D. J. Fixsen, M. Halpern, G. F. Hinshaw, S. Meyer, S. H. Moseley, M. D. Seiffert, D. N. Spergel, and E. J. Wollack, “The primordial inflation explorer (PIXIE),” Proc. SPIE 8146, 81460T (2010). [CrossRef]
  3. B. Jackson, P. de Korte, J. van der Kuur, P. Mauskopf, J. Beyer, M. Bruijn, A. Cros, J. Gao, D. Griffin, R. den Hartog, M. Kiviranta, G. de Lange, B. van Leeuwen, C. Macculi, L. Ravera, N. Trappe, H. van Weers, and S. Withington, “The SPICA-SAFARI detector system: TES detector arrays with frequency-division multiplexed SQUID readout,” IEEE Trans. Terahertz Sci. Technol. 2, 12–21 (2012). [CrossRef]
  4. S. Withington and G. Saklatvala, “Characterizing the behaviour of partially coherent detectors through spatio-temporal modes,” J. Opt. A 9, 626–633 (2007). [CrossRef]
  5. J. Murphy and R. Padman, “Radiation patterns of few-moded horns and condensing lightpipes,” Infrared Phys. 31, 291–299 (1991). [CrossRef]
  6. R. Padman and J. Murphy, “Radiation patterns of scalar lightpipes,” Infrared Phys. 31, 441–446 (1991). [CrossRef]
  7. V. Yurchenko and E. Yurchenko, “Reciprocity in simulations of bolometric detectors in transmitting mode,” Int. J. Infrared Millim. Waves 27, 355–371 (2006). [CrossRef]
  8. S. Withington and C. Thomas, “Analysis of far-infrared horns, lightpipes, and cavities containing patterned conductive films,” J. Opt. Soc. Am. A 27, 2354–2364 (2010). [CrossRef]
  9. J. A. Murphy, S. Doherty, N. Trappe, C. Bracken, T. Peacocke, and C. O’Sullivan, “New developments in waveguide mode-matching techniques for far-infrared astronomy,” Proc. SPIE 8261, 82610F (2012). [CrossRef]
  10. J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, “GPU computing,” Proc. IEEE 96, 879–899 (2008). [CrossRef]
  11. T. B. A. Senior and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, Vol. 41 of IEE Electromagnetic Wave Series (IEE, 1995).
  12. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  13. H. A. Wheeler, “Formulas for the skin effect,” Proc. IRE 30, 412–424 (1942). [CrossRef]
  14. J. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
  15. C. Thomas, “Theoretical, numerical and experimental studies of the optical behaviour of few-mode power detectors for submillimetre and far-infrared astronomy,” Ph.D. thesis (University of Cambridge, 2011).
  16. K. Kurokawa, “Power waves and the scattering matrix,” IEEE Trans. Microwave Theor. Tech. 13, 194–202 (1965). [CrossRef]
  17. H. Haskal, “Matrix description of waveguide discontinuities in the presence of evanescent modes,” IEEE Trans. Microwave Theor. Tech. 12, 184–188 (1964). [CrossRef]
  18. A. Olver, Microwave Horns and Feeds (IEE and IEEE, 1994).
  19. C. Tai, Dyadic Green Functions in Electromagnetic Theory (IEEE, 1994).
  20. G. Saklatvala, S. Withington, and M. Hobson, “Coupled-mode theory for infrared and submillimeter wave detectors,” J. Opt. Soc. Am. A 24, 764–775 (2007). [CrossRef]
  21. S. Withington and C. Thomas, “Optical theory of partially coherent thin-film energy-absorbing structures for power detectors and imaging arrays,” J. Opt. Soc. Am. 26, 1382–1392 (2009). [CrossRef]
  22. C. Thomas, S. Withington, D. Chuss, E. Wollack, and S. Moseley, “Modeling the intensity and polarization response of planar bolometric detectors,” J. Opt. Soc. Am. A 27, 1219–1231 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited