OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 9 — Sep. 1, 2013
  • pp: 1714–1718

Giant circular polarization conversion in layer-by-layer nonchiral metamaterial

Peng Zhang, Ming Zhao, Lin Wu, Zeqin Lu, ZuoWei Xie, Yu Zheng, Jian Duan, and ZhenYu Yang  »View Author Affiliations

JOSA A, Vol. 30, Issue 9, pp. 1714-1718 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (844 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We studied numerically the transmission properties of a kind of layer-by-layer nonchiral metamaterial. Simulation results show that under certain off-normal incidence, giant circular polarization conversion occurs for both the right and left circularly polarized waves with a roughly 1 GHz operation band. Meanwhile, the copolarization transmissions are almost suppressed to zero, leading to the high purity circular polarization transformation. This phenomenon of giant circular polarization conversion is assumed to suffer from the strong magnetic response, which is illustrated by the surface current distributions of the structure. Compared with chiral structures, this nonchiral structure is easier to design and fabricate and is expected to be used as a promising circular polarization transformer.

© 2013 Optical Society of America

OCIS Codes
(120.7000) Instrumentation, measurement, and metrology : Transmission
(230.5440) Optical devices : Polarization-selective devices
(260.5430) Physical optics : Polarization
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: April 26, 2013
Revised Manuscript: June 27, 2013
Manuscript Accepted: July 9, 2013
Published: August 2, 2013

Peng Zhang, Ming Zhao, Lin Wu, Zeqin Lu, ZuoWei Xie, Yu Zheng, Jian Duan, and ZhenYu Yang, "Giant circular polarization conversion in layer-by-layer nonchiral metamaterial," J. Opt. Soc. Am. A 30, 1714-1718 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004). [CrossRef]
  2. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104(R) (2009). [CrossRef]
  3. B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94, 151112 (2009). [CrossRef]
  4. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009). [CrossRef]
  5. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009). [CrossRef]
  6. J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17, 14172–14179 (2009). [CrossRef]
  7. C. Wu, H. Li, Z. Wei, X. T. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105, 247401 (2010). [CrossRef]
  8. A. S. Schwaneche, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940–2943 (2008). [CrossRef]
  9. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94, 131901 (2009). [CrossRef]
  10. V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007). [CrossRef]
  11. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006). [CrossRef]
  12. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009). [CrossRef]
  13. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006). [CrossRef]
  14. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009). [CrossRef]
  15. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett. 36, 1653–1655 (2011). [CrossRef]
  16. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009). [CrossRef]
  17. Y. Zhao, M. A. Belkin, and A. Alu, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012). [CrossRef]
  18. Z. Y. Yang, M. Zhao, and P. X. Lu, “How to improve the signal-to-noise ratio for circular polarizers consisting of helical metamaterials?,” Opt. Express 19, 4255–4260 (2011). [CrossRef]
  19. S. X. Li, Z. Y. Yang, J. Wang, and M. Zhao, “Broadband terahertz circular polarizers with single- and double-helical array metamaterials,” J. Opt. Soc. Am. A 28, 19–23 (2011). [CrossRef]
  20. X. Ma, C. Huang, M. Pu, Y. Wang, and Z. Zhao, “Dual-band asymmetry chiral metamaterial based on planar spiral structure,” Appl. Phys. Lett. 101, 161901 (2012). [CrossRef]
  21. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009). [CrossRef]
  22. B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). [CrossRef]
  23. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007). [CrossRef]
  24. R. Singh, I. A. I. Ai-Naib, M. Koch, and W. L. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 6312–6319 (2011). [CrossRef]
  25. A. E. Nikolaenko, F. D. Angelis, S. A. Boden, N. Papasimakis, and P. Ashburn, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104, 153902 (2010). [CrossRef]
  26. V. Yannopapas, “Circular dichroism in planar nonchiral plasmonic metamaterials,” Opt. Lett. 34, 632–634 (2009). [CrossRef]
  27. T. Cao and M. J. Cryan, “Circular dichroism in planar nonchiral metamaterial made of elliptical nanoholes array,” J. Electromagn. Waves Appl. 26, 1275–1282 (2012). [CrossRef]
  28. T. Cao and M. J. Cryan, “Enhancement of circular dichroism by a planar non-chiral magnetic metamaterial,” J. Opt. 14, 085101 (2012). [CrossRef]
  29. J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamatrial,” J. Appl. Phys. 112, 073522 (2012). [CrossRef]
  30. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A 11, 074009 (2009). [CrossRef]
  31. R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express 18, 13425–13430 (2010). [CrossRef]
  32. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett. 93, 191911 (2008). [CrossRef]
  33. C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun. 285, 2750–2754 (2012). [CrossRef]
  34. J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98, 151908 (2011). [CrossRef]
  35. M. Kang, T. Feng, H. T. Wang, and J. Li, “Wave front engineering from an array of thin aperture antennas,” Opt. Express 20, 15882–15890 (2012). [CrossRef]
  36. Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96, 203501 (2010). [CrossRef]
  37. C. Huang, X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, “Dual-band 90° polarization rotaor using twisted split ring resonators array,” Opt. Commun. 291, 345–348 (2013). [CrossRef]
  38. N. Liu and H. Giessen, “Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling,” Opt. Express 16, 21233–21238 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited