OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 9 — Sep. 1, 2013
  • pp: 1825–1831

Approach for fast numerical propagation of uniformly polarized random electromagnetic fields in dispersive linearly birefringent systems

Piotr L. Makowski and Andrzej W. Domanski  »View Author Affiliations


JOSA A, Vol. 30, Issue 9, pp. 1825-1831 (2013)
http://dx.doi.org/10.1364/JOSAA.30.001825


View Full Text Article

Enhanced HTML    Acrobat PDF (411 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An efficient simulation technique is proposed for computing propagation of uniformly polarized statistically stationary fields in linear nonimage-forming systems that includes dispersion of linear birefringence to all orders. The method is based on the discrete-time Fourier transformation of modified frequency profiles of the spectral Stokes parameters. It works under the condition that all (linearly) birefringent sections present in the system are described by the same phase birefringence dispersion curve, being a monotonic function of the optical frequency within the bandwidth of the light. We demonstrate the technique as a supplement for the Mueller–Stokes matrix formalism extended to any uniformly polarized polychromatic illumination. Accuracy of its numerical implementation has been verified by using parameters of a Lyot depolarizer made of a highly birefringent and dispersive monomode photonic crystal fiber.

© 2013 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(260.1440) Physical optics : Birefringence
(260.2030) Physical optics : Dispersion
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: May 8, 2013
Revised Manuscript: August 1, 2013
Manuscript Accepted: August 1, 2013
Published: August 22, 2013

Citation
Piotr L. Makowski and Andrzej W. Domanski, "Approach for fast numerical propagation of uniformly polarized random electromagnetic fields in dispersive linearly birefringent systems," J. Opt. Soc. Am. A 30, 1825-1831 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-9-1825


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. H. Billings, “A monochromatic depolarizer,” J. Opt. Soc. Am. 41, 966–968 (1951). [CrossRef]
  2. A. Loeber, “Depolarization of white light by a birefringent crystal. II. The Lyot depolarizer,” J. Opt. Soc. Am. 72, 650–656 (1982). [CrossRef]
  3. W. K. Burns, “Degree of polarization in the Lyot depolarizer,” J. Lightwave Technol. 1, 475–479 (1983). [CrossRef]
  4. K. Mochizuki, “Degree of polarization in jointed fibers: the Lyot depolarizer,” Appl. Opt. 23, 3284–3288 (1984). [CrossRef]
  5. P. L. Makowski, M. Z. Szymanski, and A. W. Domanski, “Lyot depolarizer in terms of the theory of coherence-description for light of any spectrum,” Appl. Opt. 51, 626–634 (2012). [CrossRef]
  6. E. I. Alekseev and E. N. Bazarov, “Theoretical basis of the method for reducing drift of the zero level of the output signal of a fiber-optic gyroscope with the aid of a Lyot depolarizer,” Sov. J. Quantum Electron. 22, 834–839 (1992). [CrossRef]
  7. R. Barakat, “Theory of the coherency matrix for light of arbitrary spectral bandwidth,” J. Opt. Soc. Am. 53, 317–322 (1963). [CrossRef]
  8. P. L. Makowski and A. W. Domanski, “Approach for modeling influence of birefringence dispersion on polarization properties of multi-section systems,” Proc. SPIE 8697, 869703 (2012). [CrossRef]
  9. P. Réfrégier, T. Setälä, and A. T. Friberg, “Temporal and spectral degrees of polarization of light,” Proc. SPIE 8171, 817102 (2011). [CrossRef]
  10. T. R. Woliński, “Polarimetric optical fibers and sensors,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2000), Vol. 40, pp. 1–75.
  11. T. Nasilowski, F. Berghmans, T. Geernaert, K. Chah, J. Van Erps, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, T. Martynkien, W. Urbanczyk, P. Mergo, M. Makara, J. Wojcik, C. Chojetzki, and H. Thienpont, “Sensing with photonic crystal fibres,” in IEEE International Symposium on Intelligent Signal Processing, 2007. WISP 2007 (2007), pp. 1–6.
  12. D. J. Liu and Z. X. Zhou, “Propagation of partially polarized, partially coherent beams in uniaxial crystals orthogonal to the optical axis,” Eur. Phys. J. D 54, 95–101 (2009). [CrossRef]
  13. R. C. Jones, “A new calculus for the treatment of optical systems. VII. Properties of the N-matrices,” J. Opt. Soc. Am. 38, 671–683 (1948). [CrossRef]
  14. N. Ortega-Quijano and J. L. Arce-Diego, “Generalized Jones matrices for anisotropic media,” Opt. Express 21, 6895–6900 (2013). [CrossRef]
  15. R. M. A. Azzam, “Propagation of partially polarized light through anisotropic media with or without depolarization: a differential 4×4 matrix calculus,” J. Opt. Soc. Am. 68, 1756–1767 (1978). [CrossRef]
  16. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312, 263–267 (2003). [CrossRef]
  17. F. Gori, M. Santarsiero, R. Simon, G. Piquero, R. Borghi, and G. Guattari, “Coherent-mode decomposition of partially polarized, partially coherent sources,” J. Opt. Soc. Am. A 20, 78–84 (2003). [CrossRef]
  18. J. Tervo, T. Setälä, and A. T. Friberg, “Theory of partially coherent electromagnetic fields in the space-frequency domain,” J. Opt. Soc. Am. A 21, 2205–2215 (2004). [CrossRef]
  19. M. A. Alonso and E. Wolf, “The cross-spectral density matrix of a planar, electromagnetic stochastic source as a correlation matrix,” Opt. Commun. 281, 2393–2396 (2008). [CrossRef]
  20. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  21. P. L. Makowski and A. W. Domanski, “Extended Mueller–Stokes description of polarization-mode transformation in linearly birefringent single mode optical fibers,” Opt. Lett. 38, 1107–1109 (2013). [CrossRef]
  22. O. Korotkova and E. Wolf, “Generalized Stokes parameters of random electromagnetic beams,” Opt. Lett. 30, 198–200 (2005). [CrossRef]
  23. A. Dogariu and G. Popescu, “Measuring the phase of spatially coherent polychromatic fields,” Phys. Rev. Lett. 89, 243902 (2002). [CrossRef]
  24. C. Brosseau, “Mueller matrix analysis of light depolarization by a linear optical medium,” Opt. Commun. 131, 229–235 (1996). [CrossRef]
  25. C. Tsao, Optical Fibre Waveguide Analysis (Oxford University, 1992).
  26. K. Böhm, K. Petermann, and E. Weidel, “Performance of Lyot depolarizers with birefringent single-mode fibers,” J. Lightwave Technol. 1, 71–74 (1983). [CrossRef]
  27. L. Zhang, T. Luo, Y. Yue, and A. E. Willner, “High group birefringence in photonic crystal fibers with both positive and negative phase birefringences,” Pure Appl. Opt. 10, 035004 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited