OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 1 — Jan. 1, 2014
  • pp: 101–113

Static and predictive tomographic reconstruction for wide-field multi-object adaptive optics systems

C. Correia, K. Jackson, J.-P. Véran, D. Andersen, O. Lardière, and C. Bradley  »View Author Affiliations


JOSA A, Vol. 31, Issue 1, pp. 101-113 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000101


View Full Text Article

Enhanced HTML    Acrobat PDF (1446 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multi-object adaptive optics (MOAO) systems are still in their infancy: their complex optical designs for tomographic, wide-field wavefront sensing, coupled with open-loop (OL) correction, make their calibration a challenge. The correction of a discrete number of specific directions in the field allows for streamlined application of a general class of spatio-angular algorithms, initially proposed in Whiteley et al. [J. Opt. Soc. Am. A 15, 2097 (1998)], which is compatible with partial on-line calibration. The recent Learn & Apply algorithm from Vidal et al. [J. Opt. Soc. Am. A 27, A253 (2010)] can then be reinterpreted in a broader framework of tomographic algorithms and is shown to be a special case that exploits the particulars of OL and aperture-plane phase conjugation. An extension to embed a temporal prediction step to tackle sky-coverage limitations is discussed. The trade-off between lengthening the camera integration period, therefore increasing system lag error, and the resulting improvement in SNR can be shifted to higher guide-star magnitudes by introducing temporal prediction. The derivation of the optimal predictor and a comparison to suboptimal autoregressive models is provided using temporal structure functions. It is shown using end-to-end simulations of Raven, the MOAO science, and technology demonstrator for the 8 m Subaru telescope that prediction allows by itself the use of 1-magnitude-fainter guide stars.

© 2013 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: July 31, 2013
Revised Manuscript: October 28, 2013
Manuscript Accepted: November 9, 2013
Published: December 11, 2013

Citation
C. Correia, K. Jackson, J.-P. Véran, D. Andersen, O. Lardière, and C. Bradley, "Static and predictive tomographic reconstruction for wide-field multi-object adaptive optics systems," J. Opt. Soc. Am. A 31, 101-113 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-1-101


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Andersen, K. J. Jackson, C. Blain, C. Bradley, C. Correia, M. Ito, O. Lardière, and J.-P. Véran, “Performance modeling for the raven multi-object adaptive optics demonstrator,” Publ. Astron. Soc. Pac. 124, 469–484 (2012). [CrossRef]
  2. F. J. Rigaut, B. L. Ellerbroek, and R. Flicker, “Principles, limitations, and performance of multiconjugate adaptive optics,” Proc. SPIE 4007, 1022–1031 (2000). [CrossRef]
  3. A. Tokovinin, M. Le Louarn, E. Viard, N. Hubin, and R. Conan, “Optimized modal tomography in adaptive optics,” Astron. Astrophys. 378, 710–721 (2001). [CrossRef]
  4. F. Vidal, E. Gendron, and G. Rousset, “Tomography approach for multi-object adaptive optics,” J. Opt. Soc. Am. A 27, A253–A264 (2010). [CrossRef]
  5. M. R. Whiteley, B. M. Welsh, and M. C. Roggemann, “Optimal modal wave-front compensation for anisoplanatism in adaptive optics,” J. Opt. Soc. Am. A 15, 2097–2106 (1998). [CrossRef]
  6. G. C. Valley, “Long- and short-term Strehl ratios for turbulence with finite inner and outer scales,” Appl. Opt. 18, 984–987 (1979). [CrossRef]
  7. B. L. Ellerbroek, “Efficient computation of minimum-variance wave-front reconstructors with sparse matrix techniques,” J. Opt. Soc. Am. A 19, 1803–1816 (2002). [CrossRef]
  8. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. A 66, 207–211 (1976). [CrossRef]
  9. R. Ragazzoni, E. Marchetti, and F. Rigaut, “Modal tomography for adaptive optics,” Astron. Astrophys. 342, L53–L56 (1999).
  10. T. Fusco, J.-M. Conan, G. Rousset, L. M. Mugnier, and V. Michau, “Optimal wave-front reconstruction strategies for multiconjugate adaptive optics,” J. Opt. Soc. Am. A 18, 2527–2538 (2001). [CrossRef]
  11. P. Piatrou and M. C. Roggemann, “Performance study of Kalman filter controller for multiconjugate adaptive optics,” Appl. Opt. 46, 1446–1455 (2007). [CrossRef]
  12. L. Gilles, “Closed-loop stability and performance analysis of least-squares and minimum-variance control algorithms for multiconjugate adaptive optics,” Appl. Opt. 44, 993–1002 (2005). [CrossRef]
  13. B. D. O. Anderson and J. B. Moore, Optimal Filtering (Dover, 1995).
  14. G. C. Valley and S. M. Wandzura, “Spatial correlation of phase-expansion coefficients for propagation through atmospheric turbulence,” J. Opt. Soc. Am. 69, 712–717 (1979). [CrossRef]
  15. F. Chassat, “Calcul du domaine d’isoplanétisme d’un système d’optique adaptative fonctionnant à travers la turbulence atmosphérique,” J. Opt. 20, 13–23 (1989). [CrossRef]
  16. N. Takato and I. Yamaguchi, “Spatial correlation of Zernike phase-expansion coefficients for atmospheric turbulence with finite outer scale,” J. Opt. Soc. Am. A 12, 958–963 (1995). [CrossRef]
  17. M. R. Whiteley, M. C. Roggemann, and B. M. Welsh, “Temporal properties of the zernike expansion coefficients of turbulence-induced phase aberrations for aperture and source motion,” J. Opt. Soc. Am. A 15, 993–1005 (1998). [CrossRef]
  18. D. M. Winker, “Effect of a finite outer scale on the Zernike decomposition of atmospheric optical turbulence,” J. Opt. Soc. Am. A 8, 1568–1573 (1991). [CrossRef]
  19. A. Cortés, B. Neichel, A. Guesalaga, J. Osborn, F. Rigaut, and D. Guzman, “Atmospheric turbulence profiling using multiple laser star wavefront sensors,” Mon. Not. R. Astron. Soc. 427, 2089–2099 (2012). [CrossRef]
  20. V. P. Lukin, “Dynamics of adaptive optical systems,” J. Opt. Soc. Am. A 27, A216–A222 (2010). [CrossRef]
  21. R. Ragazzoni, E. Diolaiti, J. Farinato, E. Fedrigo, E. Marchetti, M. Tordi, and D. Kirkman, “Multiple field of view layer-oriented adaptive optics,” Astron. Astrophys. 396, 731–744 (2002). [CrossRef]
  22. F. Assémat, R. Wilson, and E. Gendron, “Method for simulating infinitely long and non stationary phase screens with optimized memory storage,” Opt. Express 14, 988–999 (2006). [CrossRef]
  23. D. L. Fried and T. Clark, “Extruding kolmogorov-type phase screen ribbons,” J. Opt. Soc. Am. A 25, 463–468 (2008). [CrossRef]
  24. A. Beghi, A. Cenedese, and A. Masiero, “Stochastic realization approach to the efficient simulation of phase screens,” J. Opt. Soc. Am. A 25, 515–525 (2008). [CrossRef]
  25. C. Kulcsár, H.-F. Raynaud, C. Petit, J.-M. Conan, and P. V. de Lesegno, “Optimal control, observers and integrators in adaptive optics,” Opt. Express 14, 7464–7476 (2006). [CrossRef]
  26. G. Sivo, H.-F. Raynaud, J.-M. Conan, C. Kulcsr, E. Gendron, F. Vidal, and A. Basden, “First laboratory validation of LQG control with the CANARY MOAO pathfinder,” Proc. SPIE 8447, 84472Y (2012). [CrossRef]
  27. C. Correia, J.-P. Véran, G. Herriot, B. L. Ellerbroek, L. Wang, and L. Gilles, “Increased sky coverage with optimal correction of tilt and tilt-anisoplanatism modes in laser-guide-star multiconjugate adaptive optics,” J. Opt. Soc. Am. A 30, 604–615 (2013). [CrossRef]
  28. C. Correia, H.-F. Raynaud, C. Kulcsár, and J.-M. Conan, “On the optimal reconstruction and control of adaptive optical systems with mirror dynamics,” J. Opt. Soc. Am. A 27, 333–349 (2010). [CrossRef]
  29. B. Le Roux, J.-M. Conan, C. Kulcsár, H.-F. Raynaud, L. M. Mugnier, and T. Fusco, “Optimal control law for classical and multiconjugate adaptive optics,” J. Opt. Soc. Am. A 21, 1261–1276 (2004). [CrossRef]
  30. J.-M. Conan, G. Rousset, and P.-Y. Madec, “Wave-front temporal spectra in high-resolution imaging through turbulence,” J. Opt. Soc. Am. A 12, 1559–1570 (1995). [CrossRef]
  31. K. Jackson, C. Correia, O. Lardière, D. Andersen, and C. Bradley, “Tomography for Raven, a multi-object adaptive optics science and technology demonstrator,” in Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS 2012), Maui, Hawaii, September11–14, 2012 (Curran Associates, 2012).
  32. C. Petit, J.-M. Conan, C. Kulcsár, and H.-F. Raynaud, “Linear quadratic Gaussian control for adaptive optics and multiconjugate adaptive optics: experimental and numerical analysis,” J. Opt. Soc. Am. A 26, 1307–1325 (2009). [CrossRef]
  33. A. C. Robin, C. Reylé, S. Derrière, and S. Picaud, “A synthetic view on structure and evolution of the Milky Way,” Astron. Astrophys. 409, 523–540 (2003). [CrossRef]
  34. R. M. Clare, B. L. Ellerbroek, G. Herriot, and J.-P. Véran, “Adaptive optics sky coverage modeling for extremely large telescopes,” Appl. Opt. 45, 8964–8978 (2006). [CrossRef]
  35. F. Rigaut and E. Gendron, “Laser guide star in adaptive optics—the tilt determination problem,” Astron. Astrophys. 261, 677–684 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited