OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 1 — Jan. 1, 2014
  • pp: 162–171

Surface scattering of core–shell particles with anisotropic shell

Pieter A. A. De Beule  »View Author Affiliations

JOSA A, Vol. 31, Issue 1, pp. 162-171 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (976 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Bobbert–Vlieger solution to light scattering of a spherical particle suspended above a surface is extended to model the scattering of core–shell structures with anisotropic shell. Numerical modeling demonstrates that ellipsometry has potential to resolve particle shell anisotropy down to 1.8×104 for SiO2@Au core–shell particles in air with 50 nm core diameter and 10 nm shell thickness deposited on a silicon Si [100] substrate with a density of 1μm2. Application of the Ibrahim and Bashara criterion for ellipsometer parameter cross correlation identifies variable-angle ellipsometry as a viable experimental approach to separate particle core radius and shell thickness from the shell anisotropy. Ellipsometry is also identified as an alternative technique for determination of liposome anisotropy and for the study of liposome fusion with a substrate in the formation process of supported lipid bilayers.

© 2013 Optical Society of America

OCIS Codes
(290.5850) Scattering : Scattering, particles
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces

ToC Category:

Original Manuscript: August 23, 2013
Revised Manuscript: November 27, 2013
Manuscript Accepted: November 27, 2013
Published: December 19, 2013

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Pieter A. A. De Beule, "Surface scattering of core–shell particles with anisotropic shell," J. Opt. Soc. Am. A 31, 162-171 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. A. Erickson and J. W. Tunnell, “Gold nanoshells in biomedical applications,” in Nanomaterials for the Life Sciences, C. S. S. R. Kumar, ed., Vol. 3: Mixed Metal Nanomaterials (Wiley-VCH, 2009), pp. 1–44.
  2. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
  3. M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, “Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy,” Adv. Drug Delivery Rev. 63, 24–46 (2011). [CrossRef]
  4. D. W. Northfelt, F. J. Martin, P. Working, P. A. Volberding, J. Russell, M. Newman, M. A. Amantea, and L. D. Kaplan, “Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma,” J. Clin. Pharmacol. 36, 55–63 (1996).
  5. A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra, R. Cohen, F. Martin, A. Huang, and Y. Barenholz, “Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes,” Cancer Res. 54, 987–992 (1994).
  6. M. Gonzales and K. M. Krishnan, “Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia,” J. Magn. Magn. Mater. 293, 265–270 (2005). [CrossRef]
  7. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  8. P. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137A, 209–242 (1986). [CrossRef]
  9. Z. Salamon and G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orentiation, polarizability, and shape,” Biophys. J. 80, 1557–1567 (2001). [CrossRef]
  10. C.-W. Lee, R. S. Decca, S. R. Wassall, and J. J. Breen, “Direct imaging of domains in the L β state of 1,2-dipalmitoylphosphatidylcholine bilayers,” Phys. Rev. E 67, 061914 (2003). [CrossRef]
  11. D. Den Engelsen, “Optical anisotropy in ordered systems of lipids,” Surf. Sci. 56, 272–280 (1976). [CrossRef]
  12. R. Horváth, G. Fricsovszky, and E. Papp, “Application of the optical waveguide lightmode spectroscopy to monitor lipid bilayer phase transition,” Biosens. Bioelectron. 18, 415–428 (2003). [CrossRef]
  13. A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,” Anal. Chem. 80, 3666–3676 (2008). [CrossRef]
  14. A. Erbe and R. Sigel, “Tilt angle of lipid acyl chains in unilamellar vesicles determined by ellipsometric light scattering,” Eur. Phys. J. E 22, 303–309 (2007). [CrossRef]
  15. R. P. Richter, R. Bérat, and A. R. Brisson, “Formation of solid-supported lipid bilayers: an integrated view,” Langmuir 22, 3497–3505 (2006). [CrossRef]
  16. C. J. Bouwkamp and H. B. G. Casimir, “On multipole expansions in the theory of electromagnetic radiation,” Physica 20, 539–554 (1954). [CrossRef]
  17. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908). [CrossRef]
  18. P. Bobbert, J. Vlieger, and R. Greef, “Light reflection from a substrate sparsely seeded with spheres—comparison with an ellipsometric experiment,” Physica A 137A, 243–257 (1986). [CrossRef]
  19. J. H. Kim, S. H. Ehrman, G. W. Mulholland, and T. A. Germer, “Polarized light scattering from metallic particles on silicon wafers,” in Optical Metrology Roadmap for the Semiconductor, Optical and Data Storage Industries, A. Duparré and S. Bhanwar, eds. (SPIE, 2001), pp. 281–290.
  20. B. Kaplan and B. Drévillon, “Müller matrix measurements of small spherical particles deposited on a c-Si wafer,” Appl. Opt. 41, 3911–3918 (2002). [CrossRef]
  21. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951). [CrossRef]
  22. J. Roth and M. Dignam, “Scattering and extinction cross sections for a spherical particle coated with an oriented molecular layer,” J. Opt. Soc. Am. 63, 308–311 (1973). [CrossRef]
  23. B. Lange and S. R. Aragón, “Mie scattering from thin anisotropic spherical shells,” J. Chem. Phys. 92, 4643–4650 (1990). [CrossRef]
  24. D. K. Hahn and S. R. Aragón, “MIE scattering from anisotropic thick spherical shells,” J. Chem. Phys. 101, 8409–8417 (1994). [CrossRef]
  25. T. A. Germer, “SCATMECH: polarized light scattering C++ class library,” http://www.nist.gov/pml/div685/grp06/scattering_scatmech.cfm (2008).
  26. H. Fujiwara, Spectoscopic Ellipsometry: Principles and Applications (Maruzen Co. Ltd., 2005).
  27. M. A. Stolfi, L. Dal Negro, J. Michel, X. Duan, L. C. Kimerling, and J. Haavisto, “Anomalous birefringence in annealed Si-rich silicon dioxide,” in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (CD) (Optical Society of America, 2006), paper IMB5.
  28. R. Horvath and J. J. Ramsden, “Quasi-isotropic analysis of anisotropic thin films on optical waveguides,” Langmuir 23, 9330–9334 (2007). [CrossRef]
  29. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965). [CrossRef]
  30. D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine 6, 161–169 (2010).
  31. W. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989). [CrossRef]
  32. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993). [CrossRef]
  33. U. Kreibig and P. Zacharias, “Surface plasma resonances in small spherical silver and gold particles,” Z. Phys. 231, 128–143 (1970). [CrossRef]
  34. P. Johnson and R. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
  35. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  36. D. E. Aspnes and A. A. Studna, “High precision scanning ellipsometer,” Appl. Opt. 14, 220–228 (1975). [CrossRef]
  37. M. M. Ibrahim and M. Bashara, “Parameter-correlation and computational considerations in multiple-angle ellipsometry,” J. Opt. Soc. Am. 61, 1622–1629 (1971). [CrossRef]
  38. A. Anantharam, B. Onoa, R. H. Edwards, R. W. Holz, and D. Axelrod, “Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM,” J. Cell Biol. 188, 415–428 (2010). [CrossRef]
  39. J. H. van Zanten and H. G. Monbouquette, “Phosphatidylcholine vesicle diamter, molecular weight and wall thickness determined by static light scattering,” J. Colloid Interface Sci. 165, 512–518 (1994). [CrossRef]
  40. K. Mishima, K. Satoh, and T. Ogihara, “Optical birefringence of phosphatidylcholine liposmes in gel phases,” Biochim. Biophys. Acta 898, 231–238 (1987). [CrossRef]
  41. K. Mishima, K. Satoh, and K. Suzuki, “Optical birefringence of multilamellar gel phase of cholesterol/phosphatidylcholine mixtures,” Colloids Surf. B 7, 83–89 (1996). [CrossRef]
  42. K. Mishima, M. Nakajima, and T. Ogihara, “Effects of lysophospholipids on membrane order of phosphatidylcholine,” Colloids Surf. B 33, 185–189 (2004).
  43. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  44. M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Harland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006). [CrossRef]
  45. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited