OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 1 — Jan. 1, 2014
  • pp: 172–182

Propagation characteristics of decentered annular beams through non-Kolmogorov turbulence

Xiaoqing Li and Xiaoling Ji  »View Author Affiliations

JOSA A, Vol. 31, Issue 1, pp. 172-182 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (921 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper studies the propagation characteristics related to higher-order moments of decentered annular beams through non-Kolmogorov turbulence. The analytical expressions for the mean-squared beam width w, the skewness parameter A, and the kurtosis parameter K are derived. The analytical expression for the non-Kolmogorov turbulence parameter T is also derived, and the differences between two non-Kolmogorov turbulence parameters T and T are examined. It is shown that K depends on both T and T, but w and A only depend on T. K decreases monotonically as the spectral power law exponent α increases, but there exist a maximum of w and a minimum of A when α=3.112. When propagation distance z is long enough, A reaches zero, i.e., the intensity distribution is perfectly symmetric about the centroid position axis. In free space, both A>0 and A<0 may appear on propagation. However, it is always A>0 or A<0 on propagation when turbulence is not weak. On the other hand, in turbulence, the maximum of K increases as the decentered parameter increases and the obscure ratio decreases. In particular, when z is long enough, the beam spot is elliptical in free space, but it becomes circular in turbulence.

© 2013 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: September 12, 2013
Revised Manuscript: November 25, 2013
Manuscript Accepted: November 25, 2013
Published: December 19, 2013

Xiaoqing Li and Xiaoling Ji, "Propagation characteristics of decentered annular beams through non-Kolmogorov turbulence," J. Opt. Soc. Am. A 31, 172-182 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Weber, “Propagation of higher-order intensity moments in quadratic-index media,” Opt. Quantum Electron. 24, S1027–S1049 (1992). [CrossRef]
  2. P. P. Martínez-Herrero, P. M. Mejías, and H. Weber, “On the different definitions of laser beam moments,” Opt. Quantum Electron. 25, 423–428 (1993). [CrossRef]
  3. M. Sanchez, J. L. H. Neira, J. Delgado, and G. Calvo, “Free propagation of high order moments of laser beam intensity distribution,” Proc. SPIE 1397, 635–638 (1990).
  4. R. Martínez-Herrero, G. Piquero, and P. M. Mejías, “On the propagation of the kurtosis parameter of general beams,” Opt. Commun. 115, 225–232 (1995). [CrossRef]
  5. D. Dragoman, “Higher-order moments of the Wigner distribution function in first-order optical systems,” J. Opt. Soc. Am. A 11, 2643–2646 (1994). [CrossRef]
  6. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005).
  7. Y. Dan and B. Zhang, “Second moments of partially coherent beams in atmospheric turbulence,” Opt. Lett. 34, 563–565 (2009). [CrossRef]
  8. X. L. Ji, X. Q. Li, and G. M. Ji, “Propagation of second-order moments of general truncated beams in atmospheric turbulence,” New J. Phys. 13, 103006 (2011). [CrossRef]
  9. X. X. Chu, “Evolution of an airy beam in turbulence,” Opt. Lett. 36, 2701–2703 (2011). [CrossRef]
  10. X. Q. Li and X. L. Ji, “Propagation of higher-order intensity moments through an optical system in atmospheric turbulence,” Opt. Commun. 298–299, 1–7 (2013). [CrossRef]
  11. A. N. Kolmogorov, “The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers,” Dokl. Akad. Nauk SSSR 30, 301–305 (1941).
  12. C. Rao, W. Jiang, and N. Ling, “Spatial and temporal characterization of phase fluctuations in non-Kolmogorov atmospheric turbulence,” J. Mod. Opt. 47, 1111–1126 (2000). [CrossRef]
  13. A. Zilberman, E. Golbraikh, and N. S. Kopeika, “Lidar studies of aerosols and non-Kolmogorov turbulence in the Mediterranean troposphere,” Proc. SPIE 5987, 598702 (2005). [CrossRef]
  14. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non-Kolmogorov turbulence,” Proc. SPIE 6551, 65510E (2007). [CrossRef]
  15. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Opt. Eng. 47, 026003 (2008). [CrossRef]
  16. Y. Baykal and H. Gerçekcioğlu, “Equivalence of structure constants in non-Kolmogorov and Kolmogorov spectra,” Opt. Lett. 36, 4554–4556 (2011). [CrossRef]
  17. G. Wu, H. Guo, S. Yu, and B. Luo, “Spreading and direction of Gaussian–Schell model beam through a non-Kolmogorov turbulence,” Opt. Lett. 35, 715–717 (2010). [CrossRef]
  18. E. Shchepakina and O. Korotkova, “Second-order statistics of stochastic electromagnetic beams propagating through non-Kolmogorov turbulence,” Opt. Express 18, 10650–10658 (2010). [CrossRef]
  19. R. Tao, L. Si, Y. Ma, P. Zhou, and Z. Liu, “Propagation of coherently combined truncated laser beam arrays with beam distortions in non-Kolmogorov turbulence,” Appl. Opt. 51, 5609–5618 (2012). [CrossRef]
  20. Z. Mei, E. Schchepakina, and O. Korotkova, “Propagation of cosine-Gaussian correlated Schell-model beams in atmospheric turbulence,” Opt. Express 21, 17512–17519 (2013). [CrossRef]
  21. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University, 1997).
  22. A. E. Siegman, Laser (University Science, 1986).
  23. L. Y. Dou, X. L. Ji, and P. Y. Li, “Propagation of partially coherent annular beams with decentered field in turbulence along a slant path,” Opt. Express 20, 8417–8430 (2012). [CrossRef]
  24. J. P. Deng, X. L. Ji, Z. C. Pu, X. Q. Li, and X. H. Jia, “Influence of polychroism and decentration on spreading of laser beams propagating in non-Kolmogorov turbulence,” Opt. Commun. 301–302, 19–28 (2013). [CrossRef]
  25. H. M. Ozaktas, M. A. Kutay, and Z. Zalevsky, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2000).
  26. Y. Li, “Light beams with flat-topped profiles,” Opt. Lett. 27, 1007–1009 (2002). [CrossRef]
  27. D. Ruppert, Statistics and Data Analysis for Financial Engineering (Springer, 2011).
  28. D. Lopez-Mago, M. A. Bandres, and J. C. Gutiérrez-Vega, “Propagation characteristics of Cartesian parabolic-Gaussian beams,” Proc. SPIE 7789, 77890Q (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited