OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 1 — Jan. 1, 2014
  • pp: 21–25

Diffraction by 90° penetrable wedges with finite conductivity

G. Gennarelli and G. Riccio  »View Author Affiliations

JOSA A, Vol. 31, Issue 1, pp. 21-25 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (613 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This study concerns the diffraction problem relevant to a plane wave normally incident with respect to a 90° wedge. A penetrable material with finite conductivity forms the structure. A high-frequency solution is here obtained by adopting a physical optics approximation for the equivalent electric and magnetic surface currents involved in the radiation integrals used to represent the fields scattered in the inner region of the wedge and the surrounding space. Uniform asymptotic evaluations of such integrals lead to closed form expressions for the diffraction coefficient in terms of the transition function of the uniform theory of diffraction and the Fresnel coefficients for the reflection and transmission mechanisms. No limitation exists on the loss tangent of the medium. Comparisons with numerical tools assess the effectiveness of the proposed solutions for the field diffracted in the inner and outer regions.

© 2013 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(260.1960) Physical optics : Diffraction theory

ToC Category:
Physical Optics

Original Manuscript: September 30, 2013
Revised Manuscript: November 12, 2013
Manuscript Accepted: November 12, 2013
Published: December 2, 2013

G. Gennarelli and G. Riccio, "Diffraction by 90° penetrable wedges with finite conductivity," J. Opt. Soc. Am. A 31, 21-25 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am. 52, 116–130 (1962). [CrossRef]
  2. R. G. Kouyoumjian and P. H. Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface,” Proc. IEEE 62, 1448–1461 (1974). [CrossRef]
  3. R. J. Luebbers, “Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss,” IEEE Trans. Antennas Propag. 32, 70–76 (1984). [CrossRef]
  4. R. Tiberio, G. Pelosi, and G. Manara, “A uniform GTD formulation for diffraction by a wedge with impedance faces,” IEEE Trans. Antennas Propag. 33, 867–873 (1985). [CrossRef]
  5. R. G. Rojas, “Electromagnetic diffraction of an obliquely incident plane wave field by a wedge with impedance faces,” IEEE Trans. Antennas Propag. 36, 956–970 (1988). [CrossRef]
  6. G. Gennarelli and G. Riccio, “A UAPO-based model for propagation prediction in microcellular environments,” Prog. Electromagn. Res. B 17, 101–116 (2009). [CrossRef]
  7. S. Berntsen, “Diffraction of an electric polarized wave by a dielectric wedge,” SIAM J. Appl. Math. 43, 186–211 (1983). [CrossRef]
  8. A. D. Rawlins, “Diffraction by, or diffusion into, a penetrable wedge,” Proc. R. Soc. London Ser. A 455, 2655–2686 (1999). [CrossRef]
  9. E. Burge, X.-C. Yuan, B. D. Carroll, N. E. Fisher, T. J. Hall, G. A. Lester, N. D. Taket, and C. J. Oliver, “Microwave scattering from dielectric wedges with planar surfaces: a diffraction coefficient based on a physical optics version of GTD,” IEEE Trans. Antennas Propag. 47, 1515–1527 (1999). [CrossRef]
  10. J. F. Rouviere, N. Douchin, and P. F. Combes, “Diffraction by lossy dielectric wedges using both heuristic UTD formulations and FDTD,” IEEE Trans. Antennas Propag. 47, 1702–1708 (1999). [CrossRef]
  11. P. Bernardi, R. Cicchetti, and O. Testa, “A three-dimensional UTD heuristic diffraction coefficient for complex penetrable wedges,” IEEE Trans. Antennas Propag. 50, 217–224 (2002). [CrossRef]
  12. S. Y. Kim, J. W. Ra, and S. Y. Shin, “Diffraction by an arbitrary-angled dielectric wedge: part I—physical optics approximation,” IEEE Trans. Antennas Propag. 39, 1272–1281 (1991). [CrossRef]
  13. C. H. Seo and J. W. Ra, “Plane wave scattering by a lossy dielectric wedge,” Microw. Opt. Technol. Lett. 25, 360–363 (2000). [CrossRef]
  14. M. A. Salem, A. H. Kamel, and A. V. Osipov, “Electromagnetic fields in presence of an infinite dielectric wedge,” Proc. R. Soc. London Ser. A 462, 2503–2522 (2006). [CrossRef]
  15. G. Gennarelli and G. Riccio, “A uniform asymptotic solution for diffraction by a right-angled dielectric wedge,” IEEE Trans. Antennas Propag. 59, 898–903 (2011). [CrossRef]
  16. G. Gennarelli and G. Riccio, “Plane-wave diffraction by an obtuse-angled dielectric wedge,” J. Opt. Soc. Am. A 28, 627–632 (2011). [CrossRef]
  17. V. Daniele and G. Lombardi, “The Wiener–Hopf solution of the isotropic penetrable wedge problem: diffraction and total field,” IEEE Trans. Antennas Propag. 59, 3797–3818 (2011). [CrossRef]
  18. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions (Cambridge University, 2010).
  19. G. L. James, Geometrical Theory of Diffraction (Peter Peregrinus, 1986).
  20. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).
  21. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House, 2000).
  22. S. D. Gedney, “An anisotropic perfectly matched layer absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996). [CrossRef]
  23. G. Gennarelli and G. Riccio, “Time domain diffraction by a right-angled penetrable wedge,” IEEE Trans. Antennas Propag. 60, 2829–2833 (2012). [CrossRef]
  24. G. Gennarelli and G. Riccio, “Obtuse-angled penetrable wedges: a time domain solution for the diffraction coefficients,” J. Electromagn. Waves Appl. 27, 2020–2028 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited