OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 1 — Jan. 1, 2014
  • pp: 48–57

Reduction or annihilation of aberrations of an optical system by balancing ghost-imaging technique and optimal imaging of a pure weak phase object

Fei Wang, Yangjian Cai, and Bernhard J. Hoenders  »View Author Affiliations


JOSA A, Vol. 31, Issue 1, pp. 48-57 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000048


View Full Text Article

Enhanced HTML    Acrobat PDF (512 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is shown, using ghost-imaging techniques, that it is possible to reduce or even to annihilate the influence of aberrations connected with an arbitrary optical system. To this end, we consider a ghost-imaging setup, which consists of two arms, each containing an optical system. The reduction cancellation of the aberrations of the total imaging system is achieved by manipulating the values of the aberrations in one arm of the optical system. The technique is then applied for the optimal reconstruction of a weak phase object, manipulating the values of the defocusing such that the “Scherzer defocus condition” is obtained.

© 2013 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(220.1000) Optical design and fabrication : Aberration compensation
(220.1010) Optical design and fabrication : Aberrations (global)
(220.2740) Optical design and fabrication : Geometric optical design
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Image Processing

History
Original Manuscript: August 5, 2013
Revised Manuscript: November 4, 2013
Manuscript Accepted: November 10, 2013
Published: December 5, 2013

Citation
Fei Wang, Yangjian Cai, and Bernhard J. Hoenders, "Reduction or annihilation of aberrations of an optical system by balancing ghost-imaging technique and optimal imaging of a pure weak phase object," J. Opt. Soc. Am. A 31, 48-57 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-1-48


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995). [CrossRef]
  2. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ghost interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995). [CrossRef]
  3. V. Giovannetti, S. Lloyd, and L. Maccone, “Positioning and clock synchronization through entanglement,” Phys. Rev. A 65, 022309 (2002). [CrossRef]
  4. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lighography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000). [CrossRef]
  5. G. Bjork, L. L. Sanchez-Soto, and J. Soderholm, “Subwavelength lithography over extended areas,” Phys. Rev. A 64, 013811 (2001). [CrossRef]
  6. G. Bjork, L. L. Sanchez-Soto, and J. Soderholm, “Entangled-state lithography: tailoring any pattern with a single state,” Phys. Rev. Lett. 86, 4516–4519 (2001). [CrossRef]
  7. M. D. Angelo, M. V. Chekhova, and Y. H. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87, 013602 (2001). [CrossRef]
  8. A. F. Abouraddy, B. E. A. Salehand, A. V. Sergienko, and M. C. Teich, “Quantum holography,” Opt. Express 9, 498–505 (2001). [CrossRef]
  9. L. Bazano and P. Ottonello, “Ghost imaging: open secrets and puzzles for undergraduates,” Am. J. Phys. 75, 343–351 (2007). [CrossRef]
  10. B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photon. 2, 405–450 (2010). [CrossRef]
  11. P. H. S. Ribeiro and G. A. Barbosa, “Direct and ghost interference in double-slit experiments with coincidence measurements,” Phys. Rev. A 54, 3489–3492 (1996). [CrossRef]
  12. T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, 2804–2815 (1996). [CrossRef]
  13. G. A. Barbosa, “Quantum images in double-slit experiments with spontaneous down-conversion light,” Phys. Rev. A 54, 4473–4478 (1996). [CrossRef]
  14. E. J. S. Fonseca, P. H. S. Ribeiro, S. Padua, and C. H. Monken, “Quantum interference by a nonlocal double slit,” Phys. Rev. A 60, 1530–1533 (1999). [CrossRef]
  15. A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, “Quantum entangled image,” Phys. Rev. Lett. 83, 1763–1766 (1999). [CrossRef]
  16. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of the complementarity of one- and two-photon interference,” Phys. Rev. A 63, 063803 (2001). [CrossRef]
  17. B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, and M. C. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000). [CrossRef]
  18. G. Brida, E. Cagliero, G. Falzetta, M. Genovese, M. Gramegna, and E. Predazzi, “Biphoton double-slit experiment,” Phys. Rev. A 68, 033803 (2003). [CrossRef]
  19. A. Gatti, E. Brambilla, and L. A. Lugiato, “Entangled imaging and wave-particle duality: from the microscopic to macroscopic realm,” Phys. Rev. Lett. 90, 133603 (2003). [CrossRef]
  20. S. P. Walborn, M. O. T. Cunha, S. Padua, and C. H. Monken, “Double-slit quantum eraser,” Phys. Rev. A 65, 033818 (2002). [CrossRef]
  21. Y. Cai and S. Zhu, “Ghost interference with partially coherent radiation,” Opt. Lett. 29, 2716–2718 (2004). [CrossRef]
  22. Y. Cai and S. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005). [CrossRef]
  23. D. S. Simon and A. V. Sergienko, “Odd-order aberration cancellation in correlated-photon imaging,” Phys. Rev. A 82, 023819 (2010). [CrossRef]
  24. T. Shirai, T. Setl, and A. T. Friberg, “Ghost imaging of phase objects with classical incoherent light,” Phys. Rev. A 84, 041801 (2011). [CrossRef]
  25. T. Shirai, H. Kellock, T. Setl, and A. T. Friberg, “Imaging through an aberrating medium with classical ghost diffraction,” J. Opt. Soc. Am. A 29, 1288–1292 (2012). [CrossRef]
  26. A. Mikš and J. Novák, “Third-order aberration coefficients of a thick lens,” Appl. Opt. 51, 7883–7886 (2012). [CrossRef]
  27. W. T. Welford, Aberrations of Optical Systems (Adam Hilger, 1991).
  28. D. Shafer, “Optical design with only two surfaces” in Proc. SPIE 0237, 256–261 (1980). [CrossRef]
  29. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1975).
  30. A. Maréchal, in Encyclopedia of Physics (Springer, 1956), Vol. 24, Sect. 67.
  31. T. Lépine, http://paristech.institutoptique.fr/site.php?id=562&fileid=6761 , and http://paristech.institutoptique.fr/site.php?id=562 , (2013).
  32. A. Maréchal, “Imagerie géométrique. Aberrations,” in Traite d’Optique Instrumentale. Section 1: La Formation des Images (Editions de la Revue d’Optique Théorique et Instrumentale, 1952), Chap. 6.3.4, p. 91.
  33. D. N. Klyshko, “Combined EPR and two-slits experiments: interference of advanced waves,” Phys. Lett. 132, 299–304 (1988). [CrossRef]
  34. J. Cheng, “Transfer functions in lensless ghost-imaging systems,” Phys. Rev. A 78, 043823 (2008). [CrossRef]
  35. B. J. Hoenders, “On the reconstruction of a weak phase-amplitude object,” Optik 35, 116–133 (1972).
  36. J. W. Goodman, Statistical Optics (Wiley, 2000), Chap. 5.6.2, pp. 210–215.
  37. O. Scherzer, “The theoretical resolution limit of the electron microscope,” J. Appl. Phys. 20, 20–29 (1949). [CrossRef]
  38. D. B. Williams and C. B. Carter, Transmission Electron Microscopy (Springer, 2009), Chap. 28.7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited