OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 1 — Jan. 1, 2014
  • pp: 81–88

Residual amplitude modulation in interferometric gravitational wave detectors

Keiko Kokeyama, Kiwamu Izumi, William Z. Korth, Nicolas Smith-Lefebvre, Koji Arai, and Rana X. Adhikari  »View Author Affiliations


JOSA A, Vol. 31, Issue 1, pp. 81-88 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000081


View Full Text Article

Enhanced HTML    Acrobat PDF (742 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effects of residual amplitude modulation (RAM) in laser interferometers using heterodyne sensing can be substantial and difficult to mitigate. In this work, we analyze the effects of RAM on a complex laser interferometer used for gravitational wave detection. The RAM introduces unwanted offsets in the cavity length signals and thereby shifts the operating point of the optical cavities from the nominal point via feedback control. This shift causes variations in the sensing matrix, and leads to degradation in the performance of the precision noise subtraction scheme of the multiple-degree-of-freedom control system. In addition, such detuned optical cavities produce an optomechanical spring, which also perturbs the sensing matrix. We use our simulations to derive requirements on RAM for the Advanced LIGO (aLIGO) detectors, and show that the RAM expected in aLIGO will not limit its sensitivity.

© 2013 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(140.0140) Lasers and laser optics : Lasers and laser optics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 19, 2013
Revised Manuscript: November 8, 2013
Manuscript Accepted: November 10, 2013
Published: December 10, 2013

Citation
Keiko Kokeyama, Kiwamu Izumi, William Z. Korth, Nicolas Smith-Lefebvre, Koji Arai, and Rana X. Adhikari, "Residual amplitude modulation in interferometric gravitational wave detectors," J. Opt. Soc. Am. A 31, 81-88 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-1-81


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. LIGO Scientific Collaboration, “LIGO: the laser interferometer gravitational-wave observatory,” Rep. Prog. Phys. 72, 076901 (2009). [CrossRef]
  2. G. M. Harry, and the LIGO Scientific Collaboration, “Advanced LIGO: the next generation of gravitational wave detectors,” Classical Quantum Gravity 27, 084006 (2010). [CrossRef]
  3. F. Acernese, P. Amico, M. Alshourbagy, F. Antonucci, S. Aoudia, S. Avino, D. Babusci, G. Ballardin, F. Barone, L. Barsotti, M. Barsuglia, F. Beauville, S. Bigotta, S. Birindelli, M. A. Bizouard, C. Boccara, F. Bondu, L. Bosi, C. Bradaschia, S. Braccini, A. Brillet, V. Brisson, L. Brocco, D. Buskulic, E. Calloni, E. Campagna, F. Cavalier, R. Cavalieri, G. Cella, E. Cesarini, E. Chassande-Mottin, C. Corda, F. Cottone, A.-C. Clapson, F. Cleva, J.-P. Coulon, E. Cuoco, A. Dari, V. Dattilo, M. Davier, R. D. Rosa, L. D. Fiore, A. D. Virgilio, B. Dujardin, A. Eleuteri, D. Enard, I. Ferrante, F. Fidecaro, I. Fiori, R. Flaminio, J.-D. Fournier, O. Francois, S. Frasca, F. Frasconi, A. Freise, L. Gammaitoni, F. Garufi, A. Gennai, A. Giazotto, G. Giordano, L. Giordano, R. Gouaty, D. Grosjean, G. Guidi, S. Hebri, H. Heitmann, P. Hello, L. Holloway, S. Karkar, S. Kreckelbergh, P. L. Penna, M. Laval, N. Leroy, N. Letendre, M. Lorenzini, V. Loriette, M. Loupias, G. Losurdo, J.-M. Mackowski, E. Majorana, C. N. Man, M. Mantovani, F. Marchesoni, F. Marion, J. Marque, F. Martelli, A. Masserot, M. Mazzoni, L. Milano, C. Moins, J. Moreau, N. Morgado, B. Mours, A. Pai, C. Palomba, F. Paoletti, S. Pardi, A. Pasqualetti, R. Passaquieti, D. Passuello, B. Perniola, F. Piergiovanni, L. Pinard, R. Poggiani, M. Punturo, P. Puppo, K. Qipiani, P. Rapagnani, V. Reita, A. Remillieux, F. Ricci, I. Ricciardi, P. Ruggi, G. Russo, S. Solimeno, A. Spallicci, R. Stanga, R. Taddei, M. Tonelli, A. Toncelli, E. Tournefier, F. Travasso, G. Vajente, D. Verkindt, F. Vetrano, A. Viceré, J.-Y. Vinet, H. Vocca, M. Yvert, and Z. Zhang, “The Virgo status,” Classical Quantum Gravity 23, S635 (2006). [CrossRef]
  4. H. Lück, M. Hewitson, P. Ajith, B. Allen, P. Aufmuth, C. Aulbert, S. Babak, R. Balasubramanian, B. W. Barr, S. Berukoff, A. Bunkowski, G. Cagnoli, C. A. Cantley, M. M. Casey, S. Chelkowski, Y. Chen, D. Churches, T. Cokelaer, C. N. Colacino, D. R. M. Crooks, C. Cutler, K. Danzmann, R. J. Dupuis, E. Elliffe, C. Fallnich, A. Franzen, A. Freise, I. Gholami, S. Goßler, A. Grant, H. Grote, S. Grunewald, J. Harms, B. Hage, G. Heinzel, I. S. Heng, A. Hepstonstall, M. Heurs, S. Hild, J. Hough, Y. Itoh, G. Jones, R. Jones, S. H. Huttner, K. Kötter, B. Krishnan, P. Kwee, M. Luna, B. Machenschalk, M. Malec, R. A. Mercer, T. Meier, C. Messenger, S. Mohanty, K. Mossavi, S. Mukherjee, P. Murray, G. P. Newton, M. A. Papa, M. Perreur-Lloyd, M. Pitkin, M. V. Plissi, R. Prix, V. Quetschke, V. Re, T. Regimbau, H. Rehbein, S. Reid, L. Ribichini, D. I. Robertson, N. A. Robertson, C. Robinson, J. D. Romano, S. Rowan, A. Rüdiger, B. S. Sathyaprakash, R. Schilling, R. Schnabel, B. F. Schutz, F. Seifert, A. M. Sintes, J. R. Smith, P. H. Sneddon, K. A. Strain, I. Taylor, R. Taylor, A. Thüring, C. Ungarelli, H. Vahlbruch, A. Vecchio, J. Veitch, H. Ward, U. Weiland, H. Welling, L. Wen, P. Williams, B. Willke, W. Winkler, G. Woan, and R. Zhu, “Status of the GEO600 detector,” Classical Quantum Gravity 23, S71 (2006). [CrossRef]
  5. K. Somiya, “Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector,” Classical Quantum Gravity 29, 124007 (2012). [CrossRef]
  6. P. Fritschel, R. Bork, G. González, N. Mavalvala, D. Ouimette, H. Rong, D. Sigg, and M. Zucker, “Readout and control of a power-recycled interferometric gravitational-wave antenna,” Appl. Opt. 40, 4988–4998 (2001). [CrossRef]
  7. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, Handbook of Optics, Third Edition Volume II: Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry (McGraw-Hill Professional, 2009).
  8. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985). [CrossRef]
  9. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985). [CrossRef]
  10. Newport Corp., High-Frequency Electro-Optic Phase Modulators—Model Series 44xx and 485xx User’s Manual.
  11. L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012). [CrossRef]
  12. W. Wu, “Instrumentation of the next generation gravitational wave detector: triple pendulum suspension and electro-optic modulator,” Ph.D. thesis (University of Florida, 2007).
  13. M. Evans, “Optickle,” http://www.ligo.mit.edu/~mevans/resources.html .
  14. M. Evans, “Optickle,” (Massachusetts Institute of Technology, 2007).
  15. R. L. Ward, “Length sensing and control of a prototype advanced interferometric gravitational wave detector,” Ph.D. thesis (California Institute of Technology, 2010).
  16. T. T. Fricke, “Homodyne detection for laser-interferometric gravitational wave detectors,” Ph.D. thesis (Louisiana State University, 2011).
  17. A. Buonanno, Y. Chen, and N. Mavalvala, “Quantum noise in laser-interferometer gravitational-wave detectors with a heterodyne readout scheme,” Phys. Rev. D 67, 122005 (2003). [CrossRef]
  18. S. M. Aston, M. A. Barton, A. S. Bell, N. Beveridge, B. Bland, A. J. Brummitt, G. Cagnoli, C. A. Cantley, L. Carbone, A. V. Cumming, L. Cunningham, R. M. Cutler, R. J. S. Greenhalgh, G. D. Hammond, K. Haughian, T. M. Hayler, A. Heptonstall, J. Heefner, D. Hoyland, J. Hough, R. Jones, J. S. Kissel, R. Kumar, N. A. Lockerbie, D. Lodhia, I. W. Martin, P. G. Murray, J. O’Dell, M. V. Plissi, S. Reid, J. Romie, N. A. Robertson, S. Rowan, B. Shapiro, C. C. Speake, K. A. Strain, K. V. Tokmakov, C. Torrie, A. A. van Veggel, A. Vecchio, and I. Wilmut, “Update on quadruple suspension design for advanced LIGO,” Classical Quantum Gravity 29, 235004 (2012). [CrossRef]
  19. A. Buonanno and Y. Chen, “Signal recycled laser-interferometer gravitational-wave detectors as optical springs,” Phys. Rev. D 65, 042001 (2002). [CrossRef]
  20. LIGO Scientific Collaboration, “Calibration of the LIGO gravitational wave detectors in the fifth science run,” Nucl. Instrum. Methods Phys. Res. Sect. A 624, 223–240 (2010). [CrossRef]
  21. L. Lindblom, “Optimal calibration accuracy for gravitational-wave detectors,” Phys. Rev. D 80, 042005 (2009). [CrossRef]
  22. N. Silver, The Signal and the Noise: Why So Many Predictions Fail—But Some Don’t (Penguin Group US, 2012).
  23. R. Abbott, R. X. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, and S. Waldman, “AdvLIGO interferometer sensing and control conceptual design,” (2007).
  24. M. E. L. Barsotti and P. Fritschel, “Advanced LIGO ISC design study for low power operation,” (2012).
  25. S. Sato, S. Kawamura, K. Kokeyama, F. Kawazoe, and K. Somiya, “Diagonalization of the length sensing matrix of a dual recycled laser interferometer gravitational wave antenna,” Phys. Rev. D 75, 082004 (2007). [CrossRef]
  26. K. Somiya and O. Miyakawa, “Shot-noise-limited control-loop noise in an interferometer with multiple degrees of freedom,” Appl. Opt. 49, 4335–4342 (2010). [CrossRef]
  27. P. R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited