OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 227–237

Defect detection for corner cracks in steel billets using a wavelet reconstruction method

Yong-Ju Jeon, Doo-chul Choi, Sang Jun Lee, Jong Pil Yun, and Sang Woo Kim  »View Author Affiliations


JOSA A, Vol. 31, Issue 2, pp. 227-237 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000227


View Full Text Article

Enhanced HTML    Acrobat PDF (1297 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Presently, automatic inspection algorithms are widely used to ensure high-quality products and achieve high productivity in the steelmaking industry. In this paper, we propose a vision-based method for detecting corner cracks on the surface of steel billets. Because of the presence of scales composed of oxidized substances, the billet surfaces are not uniform and vary considerably with the lighting conditions. To minimize the influence of scales and improve the accuracy of detection, a detection method based on a visual inspection algorithm is proposed. Wavelet reconstruction is used to reduce the effect of scales. Texture and morphological features are used to identify the corner cracks among the defective candidates. Finally, the experimental results show that the proposed algorithm is effective in detecting corner cracks on the surfaces of the steel billets.

© 2014 Optical Society of America

OCIS Codes
(150.3040) Machine vision : Industrial inspection
(150.1135) Machine vision : Algorithms

ToC Category:
Machine Vision

History
Original Manuscript: August 7, 2013
Revised Manuscript: December 5, 2013
Manuscript Accepted: December 8, 2013
Published: January 9, 2014

Citation
Yong-Ju Jeon, Doo-chul Choi, Sang Jun Lee, Jong Pil Yun, and Sang Woo Kim, "Defect detection for corner cracks in steel billets using a wavelet reconstruction method," J. Opt. Soc. Am. A 31, 227-237 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-2-227


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Li, S. K. Tso, X. P. Guan, and Q. Huang, “Improving automatic detection of defects in castings by applying wavelet technique,” IEEE Trans. Ind. Electron. 53, 1927–1934 (2006). [CrossRef]
  2. B. R. Suresh, R. A. Fundakowski, T. S. Levitt, and J. E. Overland, “Real-time automated visual inspection system for hot steel slabs,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-5, 563–572 (1983). [CrossRef]
  3. C. R. P. Courtney, B. W. Drinkwater, S. A. Neild, and P. D. Wilcox, “Factors affecting the ultrasonic intermodulation crack detection technique using bispectral analysis,” NDT&E Int. 41, 223–234 (2008). [CrossRef]
  4. Z. F. Zhou and Y. Cheng, “Magneto-optic microscope for visually detecting subsurface defects,” Appl. Opt. 47, 3463–3466 (2008). [CrossRef]
  5. V. Lashkia, “Defect detection in X-ray images using fuzzy reasoning,” Image Vis. Comput. 19, 261–269 (2001). [CrossRef]
  6. H. Kim, K. Jhang, M. Shin, and J. Kim, “A noncontact NDE method using a laser generated focused-Lamb wave with enhanced defect-detection ability and spatial resolution,” NDT&E Int. 39, 312–319 (2006). [CrossRef]
  7. S. C. Kim and T. J. Kang, “Automated defect detection system using wavelet packet frame and Gaussian mixture model,” J. Opt. Soc. Am. A 23, 2690–2701 (2006). [CrossRef]
  8. M. Ralló, M. S. Millán, and J. Escofet, “Unsupervised novelty detection using Gabor filters for defect segmentation in textures,” J. Opt. Soc. Am. A 26, 1967–1976 (2009). [CrossRef]
  9. Y. Han and P. Shi, “An adaptive level-selecting wavelet transform for texture defect detection,” Image Vis. Comput. 25, 1239–1248 (2007). [CrossRef]
  10. A. Kumar, “Neural network based detection of local textile defects,” Pattern Recogn. 36, 1645–1659 (2003). [CrossRef]
  11. A. Abouelela, H. M. Abbas, H. Eldeeb, A. A. Wahdan, and S. M. Nassar, “Automated vision system for localizing structural defects in textile fabrics,” Pattern Recogn. Lett. 26, 1435–1443 (2005). [CrossRef]
  12. C. S. Cho, B. M. Chung, and M. J. Park, “Development of real-time vision-based fabric inspection system,” IEEE Trans. Ind. Electron. 52, 1073–1079 (2005). [CrossRef]
  13. Z. Chen, Y. Tao, and X. Chen, “Multiresolution local contrast enhancement of X-ray images for poultry meat inspection,” Appl. Opt. 40, 1195–1200 (2001). [CrossRef]
  14. Y. C. Song, D. H. Choi, and K. H. Park, “Wavelet-based image enhancement for defect detection in thin film transistor liquid crystal display panel,” Jpn. J. Appl. Phys. 45, 5069–5072 (2006). [CrossRef]
  15. C. J. Lu and D. M. Tsai, “Automatic defect inspection for LCDs using singular value decomposition,” Int. J. Adv. Manuf. Technol. 25, 53–61 (2005). [CrossRef]
  16. K. N. Choi, N. K. Park, and S. I. Yoo, “Image restoration for quantifying TFT-LCD defect levels,” IEICE Trans. Inf. Syst. 2, 322–329 (2008).
  17. D. M. Tsai and C. Y. Hung, “Automatic defect inspection of patterned thin film transistor-liquid crystal display (TFT-LCD) panels using one-dimensional Fourier reconstruction and wavelet decomposition,” Int. J. Prod. Res. 43, 4589–4607 (2005). [CrossRef]
  18. J. L. C. Sanz and A. K. Jain, “Machine-vision techniques for inspection of printed wiring boards and thick-film circuits,” J. Opt. Soc. Am. A 3, 1465–1482 (1986). [CrossRef]
  19. J. P. Yun, Y. J. Jeon, D. Choi, and S. W. Kim, “Real-time defect detection of steel wire rods using wavelet filters optimized by univariate dynamic encoding algorithm for searches,” J. Opt. Soc. Am. A 29, 797–807 (2012). [CrossRef]
  20. D. C. Choi, Y. J. Jeon, J. P. Yun, and S. W. Kim, “Pinhole detection in steel slab images using Gabor filter and morphological features,” Appl. Opt. 50, 5122–5129 (2011). [CrossRef]
  21. J. P. Yun, S. H. Choi, and S. W. Kim, “Vision-based defect detection of scale-covered steel billet surfaces,” Opt. Eng. 48, 037205 (2009). [CrossRef]
  22. R. T. Chin and C. A. Harlow, “Automated visual inspection: a survey,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4, 557–573 (1982). [CrossRef]
  23. H. Zhang, G. Wu, X. Sun, J. Xu, and K. Xu, “A new fast border search algorithm and its expansion,” in Proceedings of the IEEE International Conference on Automation and Logistics (IEEE, 2007), pp. 1886–1890.
  24. S. G. Mallat, “Theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989). [CrossRef]
  25. W. Sun, R. Mukherjee, P. Stroeve, A. Palazoglu, and J. A. Romagnoli, “A multi-resolution approach for line-edge roughness detection,” Microelectron. Eng. 86, 340–351 (2009). [CrossRef]
  26. D. M. Tsai and C. H. Chiang, “Automatic band selection for wavelet reconstruction in the application of defect detection,” Image Vis. Comput. 21, 413–431 (2003). [CrossRef]
  27. D. M. Tsai and B. Hsiao, “Automatic surface inspection using wavelet reconstruction,” Pattern Recogn. 34, 1285–1305 (2001). [CrossRef]
  28. H. Y. T. Ngan, G. K. H. Pang, S. P. Yung, and M. K. Ng, “Wavelet based methods on patterned fabric defect detection,” Pattern Recogn. 38, 559–576 (2005). [CrossRef]
  29. W. C. Li and D. M. Tsai, “Wavelet-based defect detection in solar wafer images with inhomogeneous texture,” Pattern Recogn. 45, 742–756 (2012).
  30. W. K. Wong, C. W. M. Yuen, D. D. Fan, L. K. Chan, and E. H. F. Fung, “Stitching defect detection and classification using wavelet transform and BP neural network,” Expert Syst. Appl. 36, 3845–3856 (2009). [CrossRef]
  31. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2008).
  32. T. Chang and C. C. J. Kuo, “Texture analysis and classification with tree-structured wavelet transform,” IEEE Trans. Image Process. 2, 429–441 (1993). [CrossRef]
  33. C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Min. Knowl. Discov. 2, 121–167 (1998). [CrossRef]
  34. B. Schölkopf, K. K. Sung, C. J. C. Burges, F. Girosi, P. Niyogi, T. Poggio, and V. Vapnik, “Comparing support vector machines with Gaussian kernels to radial basis function classifiers,” IEEE Trans. Signal Process. 45, 2758–2765 (1997). [CrossRef]
  35. X. Xie, “A review of recent advances in surface defect detection using texture analysis techniques,” Electron Lett. Comput. Vis. Image Anal. 7, 1–22 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited