OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 246–252

Scalar wave scattering in spherical cavity resonator with conical channels

Hipolito Garcia-Gracia and Julio C. Gutiérrez-Vega  »View Author Affiliations


JOSA A, Vol. 31, Issue 2, pp. 246-252 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000246


View Full Text Article

Enhanced HTML    Acrobat PDF (780 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the scalar wave scattering off the spherical cavity resonator with two finite-length conical channels attached. We use the boundary wall method to explore the response of the system to changes in control parameters, such as the size of the structure and the angular width of the input and output channels, as well as their relative angular position. We found that the system is more sensitive to changes in the input channel, and a standing wave phase distribution occurs within the cavity for nontransmitting values of the incident wave number. We also saw that an optical vortex can travel unaffected through the system with aligned channels.

© 2014 Optical Society of America

OCIS Codes
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces
(290.5825) Scattering : Scattering theory

ToC Category:
Scattering

History
Original Manuscript: October 29, 2013
Manuscript Accepted: November 27, 2013
Published: January 9, 2014

Citation
Hipolito Garcia-Gracia and Julio C. Gutiérrez-Vega, "Scalar wave scattering in spherical cavity resonator with conical channels," J. Opt. Soc. Am. A 31, 246-252 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-2-246


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. V. Berry, “Regularity and chaos in classical mechanics, illustrated by three deformations of a circular ‘billiard’,” Eur. J. Phys. 2, 91–102 (1981). [CrossRef]
  2. R. W. Robinett, “Visualizing classical periodic orbits from the quantum energy spectrum via the Fourier transform: simple infinite well examples,” Am. J. Phys. 65, 1167 (1997). [CrossRef]
  3. R. L. Liboff and J. Greenberg, “The hexagon quantum billiard,” J. Stat. Phys. 105, 389–402 (2001). [CrossRef]
  4. H. Waalkens, J. Wiersig, and H. R. Dullin, “Elliptic quantum billiard,” Ann. Phys. 260, 50–90 (1997). [CrossRef]
  5. J. C. Gutiérrez-Vega, S. Chávez-Cerda, and R. M. Rodríguez-Dagnino, “Probability distributions in classical and quantum elliptic billiards,” Rev. Mex. Fis. 47, 480–488 (2001).
  6. M. A. Bandres and J. C. Gutiérrez-Vega, “Classical solutions for a free particle in a confocal elliptic billiard,” Am. J. Phys. 72, 810 (2004). [CrossRef]
  7. R. J. Noriega-Manez and J. C. Gutiérrez-Vega, “Mode structure and attenuation characteristics of hollow parabolic waveguides,” J. Opt. Soc. Am. B 24, 2273–2278 (2007). [CrossRef]
  8. T. Prosen, “Quantization of a generic chaotic 3D billiard with smooth boundary. I. Energy level statistics,” Phys. Lett. A 233, 323–331 (1997). [CrossRef]
  9. T. Prosen, “Quantization of generic chaotic 3D billiard with smooth boundary. II. Structure of high-lying eigenstates,” Phys. Lett. A 233, 332–342 (1997). [CrossRef]
  10. İ. M. Erhan and H. Taşeli, “A model for the computation of quantum billiards with arbitrary shapes,” J. Comput. Appl. Math. 194, 227–244 (2006). [CrossRef]
  11. T. Papenbrock, “Numerical study of a three-dimensional generalized stadium billiard,” Phys. Rev. E 61, 4626–4628 (2000). [CrossRef]
  12. R. L. Liboff, “Conical quantum billiard,” Lett. Math. Phys. 42, 389–391 (1997). [CrossRef]
  13. İ. M. Erhan, “Eigenvalue computation of prolate spheroidal quantum billiard,” Int. J. Math. Comput. Sci. 6, 108–113 (2010).
  14. H. Waalkens, J. Wiersig, and H. R. Dullin, “Triaxial ellipsoidal quantum billiards,” Ann. Phys. 276, 64–110 (1999). [CrossRef]
  15. H. Primack and U. Smilansky, “Quantization of the three-dimensional Sinai billiard,” Phys. Rev. Lett. 74, 4831–4834 (1995). [CrossRef]
  16. K. Na and L. E. Reichl, “Electron conductance and lifetimes in a ballistic electron waveguide,” J. Stat. Phys. 92, 519–542 (1998). [CrossRef]
  17. M. G. A. Crawford and P. W. Brouwer, “Density of proper delay times in chaotic and integrable quantum billiards,” Phys. Rev. E 65, 026221 (2002). [CrossRef]
  18. C. D. Schwieters, J. A. Alford, and J. B. Delos, “Semiclassical scattering in a circular semiconductor microstructure,” Phys. Rev. B 54, 10652–10668 (1996). [CrossRef]
  19. S. Ree and L. E. Reichl, “Aharonov–Bohm effect and resonances in the circular quantum billiard with two leads,” Phys. Rev. B 59, 8163–8169 (1999). [CrossRef]
  20. K. Fuchss, S. Ree, and L. E. Reichl, “Scattering properties of a cut-circle billiard waveguide with two conical leads,” Phys. Rev. E 63, 016214 (2000). [CrossRef]
  21. I. Březinová, L. Wirtz, S. Rotter, C. Stampfer, and J. Burgdörfer, “Transport through open quantum dots: making semiclassics quantitative,” Phys. Rev. B 81, 125308 (2010). [CrossRef]
  22. H. Ishio, “Quantum transport and classical dynamics in open billiards,” J. Stat. Phys. 83, 203–214 (1996). [CrossRef]
  23. C. P. Dettmann and O. Georgiou, “Transmission and reflection in the stadium billiard: time-dependent asymmetric transport,” Phys. Rev. E 83, 036212 (2011). [CrossRef]
  24. H. Garcia-Gracia and J. C. Gutiérrez-Vega, “Tunneling phenomena in the open elliptic quantum billiard,” Phys. Rev. E 86, 016210 (2012). [CrossRef]
  25. M. G. E. da Luz, A. S. Lupu-Sax, and E. J. Heller, “Quantum scattering from arbitrary boundaries,” Phys. Rev. E 56, 2496–2507 (1997). [CrossRef]
  26. F. M. Zanetti, E. Vicentini, and M. G. E. da Luz, “Eigenstates and scattering solutions for billiard problems: a boundary wall approach,” Ann. Phys. 323, 1644–1676 (2008). [CrossRef]
  27. F. M. Zanetti, M. L. Lyra, F. A. B. F. de Moura, and M. G. E. da Luz, “Resonant scattering states in 2D nanostructured waveguides: a boundary wall approach,” J. Phys. B At. Mol. Opt. Phys. 42, 025402 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited