OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 258–263

Intensity-interferometric spectral-domain optical coherence tomography with dispersion cancellation

Tomohiro Shirai and Ari T. Friberg  »View Author Affiliations


JOSA A, Vol. 31, Issue 2, pp. 258-263 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000258


View Full Text Article

Enhanced HTML    Acrobat PDF (315 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a technique for cancelling group-velocity dispersion in spectral-domain (SD) optical coherence tomography (OCT) based on classical intensity correlations. As a classical analogue of quantum OCT, a Hong–Ou–Mandel interferometer is combined with a conventional SD-OCT setup, and correlations between different spectral intensities are calculated. It is shown theoretically that a simple computational procedure used in SD-OCT enables scanless cross-sectional imaging with both dispersion cancellation and a factor-of-2 resolution enhancement. The method involves no ultrafast detectors and works with common light sources.

© 2014 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(110.4500) Imaging systems : Optical coherence tomography
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(110.1758) Imaging systems : Computational imaging

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: October 24, 2013
Revised Manuscript: December 16, 2013
Manuscript Accepted: December 16, 2013
Published: January 13, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Tomohiro Shirai and Ari T. Friberg, "Intensity-interferometric spectral-domain optical coherence tomography with dispersion cancellation," J. Opt. Soc. Am. A 31, 258-263 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-2-258


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003). [CrossRef]
  2. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001). [CrossRef]
  3. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9, 610–615 (2001). [CrossRef]
  4. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004). [CrossRef]
  5. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002). [CrossRef]
  6. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003). [CrossRef]
  7. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography,” Opt. Express 12, 1353–1362 (2004). [CrossRef]
  8. B. I. Erkmen and J. H. Shapiro, “Phase-conjugate optical coherence tomography,” Phys. Rev. A 74, 041601(R) (2006). [CrossRef]
  9. J. Le Gouët, D. Venkatraman, F. N. C. Wong, and J. H. Shapiro, “Experimental realization of phase-conjugate optical coherence tomography,” Opt. Lett. 35, 1001–1003 (2010). [CrossRef]
  10. K. Banaszek, A. Radunsky, and I. Walmsley, “Blind dispersion compensation for optical coherence tomography,” Opt. Commun. 269, 152–155 (2007). [CrossRef]
  11. K. J. Resch, P. Puvanathasan, J. S. Lundeen, M. W. Mitchell, and K. Bizheva, “Classical dispersion-cancellation interferometry,” Opt. Express 15, 8797–8804 (2007). [CrossRef]
  12. R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4, 864–868 (2008). [CrossRef]
  13. J. Lavoie, R. Kaltenbaek, and K. J. Resch, “Quantum-optical coherence tomography with classical light,” Opt. Express 17, 3818–3825 (2009). [CrossRef]
  14. M. D. Mazurek, K. M. Schreiter, R. Prevedel, R. Kaltenbaek, and K. J. Resch, “Dispersion-cancelled biological imaging with quantum-inspired interferometry,” Sci. Rep. 3, 1582 (2013). [CrossRef]
  15. J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992). [CrossRef]
  16. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992). [CrossRef]
  17. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992). [CrossRef]
  18. V. Torres-Company, H. Lajunen, and A. T. Friberg, “‘Nonlocal’ dispersion cancellation with classical light,” New J. Phys. 11, 063041 (2009). [CrossRef]
  19. J. D. Franson, “Nonclassical nature of dispersion cancellation and nonlocal interferometry,” Phys. Rev. A 80, 032119 (2009). [CrossRef]
  20. J. H. Shapiro, “Dispersion cancellation with phase-sensitive Gaussian-state light,” Phys. Rev. A 81, 023824 (2010). [CrossRef]
  21. J. D. Franson, “Lack of dispersion cancellation with classical phase-sensitive light,” Phys. Rev. A 81, 023825 (2010). [CrossRef]
  22. M. C. Teich, B. E. A. Saleh, F. N. C. Wong, and J. H. Shapiro, “Variations on the theme of quantum optical coherence tomography: a review,” Quant. Info. Proc. 11, 903–923 (2012). [CrossRef]
  23. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003). [CrossRef]
  24. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003). [CrossRef]
  25. Z. Yaqoob, J. Wu, and C. Yang, “Spectral domain optical coherence tomography: a better OCT imaging strategy,” Biotechniques 39, S6–S13 (2005). [CrossRef]
  26. T. Shirai and A. T. Friberg, “Resolution improvement in spectral-domain optical coherence tomography based on classical intensity correlations,” Opt. Lett. 38, 115–117 (2013). [CrossRef]
  27. H. Lajunen, V. Torres-Company, J. Lancis, and A. T. Friberg, “Resolution-enhanced optical coherence tomography based on classical intensity interferometry,” J. Opt. Soc. Am. A 26, 1049–1054 (2009). [CrossRef]
  28. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987). [CrossRef]
  29. A. Zeilinger, “General properties of lossless beam splitters in interferometry,” Am. J. Phys. 49, 882–883 (1981). [CrossRef]
  30. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited