OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 268–273

Tapered dual elliptical plasmon waveguides as highly efficient terahertz connectors between approximate plate waveguides and two-wire waveguides

Da Teng, Qing Cao, Shuang Li, and Hua Gao  »View Author Affiliations


JOSA A, Vol. 31, Issue 2, pp. 268-273 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000268


View Full Text Article

Enhanced HTML    Acrobat PDF (545 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a tapered dual elliptical plasmon waveguide for terahertz waves. This element is composed of a pair of tapered elliptical metal structures and is especially suitable for the coupling of terahertz waves from an approximate plate waveguide to a two-wire waveguide. The long axes of the two ellipses gradually reduce to the same sizes as the short axes, and thus the two-ellipse structure is now a two-wire waveguide. The slowly tapered structure eliminates the reflection and scattering during the coupling process according to WKB approximation. The numerical result shows that the coupling efficiency of this connector can reach as high as 94%.

© 2014 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(260.3090) Physical optics : Infrared, far
(260.3910) Physical optics : Metal optics

ToC Category:
Physical Optics

History
Original Manuscript: October 28, 2013
Revised Manuscript: December 17, 2013
Manuscript Accepted: December 17, 2013
Published: January 16, 2014

Citation
Da Teng, Qing Cao, Shuang Li, and Hua Gao, "Tapered dual elliptical plasmon waveguides as highly efficient terahertz connectors between approximate plate waveguides and two-wire waveguides," J. Opt. Soc. Am. A 31, 268-273 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-2-268


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995). [CrossRef]
  2. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996). [CrossRef]
  3. M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).
  4. G. Gallot, S. Jamison, R. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000). [CrossRef]
  5. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004). [CrossRef]
  6. M. Goto, A. Ouema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004). [CrossRef]
  7. M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theor. Tech. 39, 910–916 (1991). [CrossRef]
  8. S. Jamison, R. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000). [CrossRef]
  9. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000). [CrossRef]
  10. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004). [CrossRef]
  11. Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express 13, 511–518 (2005). [CrossRef]
  12. B. Heshmat, D. Li, T. E. Darcie, and R. Gordon, “Tuning plasmonic resonances of an annular aperture in metal plate,” Opt. Express 19, 5912–5923 (2011). [CrossRef]
  13. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002). [CrossRef]
  14. S. I. Bozhevolnyi, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001). [CrossRef]
  15. M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13, 10815–10822 (2005). [CrossRef]
  16. H. Cao and A. Nahata, “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express 13, 7028–7034 (2005). [CrossRef]
  17. T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005). [CrossRef]
  18. M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87, 261107 (2005). [CrossRef]
  19. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006). [CrossRef]
  20. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006). [CrossRef]
  21. X. He, J. Cao, and S. Feng, “Simulation of the propagation property of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066–2069 (2006). [CrossRef]
  22. Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Y. Wang, “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express 14, 13021–13029 (2006). [CrossRef]
  23. H. Liang, S. Ruan, and M. Zhang, “Terahertz surface wave propagation and focusing on conical metal wires,” Opt. Express 16, 18241–18248 (2008). [CrossRef]
  24. A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14, 1515–1521 (2008). [CrossRef]
  25. Y. B. Ji, E. S. Lee, J. S. Jang, and T. I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16, 271–278 (2008). [CrossRef]
  26. P. Smorenburg, W. Op’t Root, and O. Luiten, “Direct generation of terahertz surface plasmon polaritons on a wire using electron bunches,” Phys. Rev. B 78, 115415 (2008). [CrossRef]
  27. R. Gordon, “Reflection of cylindrical surface waves,” Opt. Express 17, 18621–18629 (2009). [CrossRef]
  28. M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94, 051107 (2009). [CrossRef]
  29. J. Yang, Q. Cao, and C. Zhou, “An explicit formula for metal wire plasmon of terahertz wave,” Opt. Express 17, 20806–20815 (2009). [CrossRef]
  30. X. He, “Investigation of terahertz surface waves of a metallic nanowire,” J. Opt. Soc. Am. B 27, 2298–2303 (2010). [CrossRef]
  31. J. Yang, Q. Cao, and C. Zhou, “An analytical recurrence formula for the zero-order metal wire plasmon of terahertz wave,” J. Opt. Soc. Am. A 27, 1608–1612 (2010). [CrossRef]
  32. J. Yang, Q. Cao, and C. Zhou, “Theory for terahertz plasmons of metallic nanowires with sub-skin-depth diameters,” Opt. Express 18, 18550–18557 (2010). [CrossRef]
  33. L. Chusseau and J.-P. Guillet, “Coupling and propagation of Sommerfeld waves at 100 and 300  GHz,” J. Infrared Millim. Terahertz Waves 33, 174–182 (2012). [CrossRef]
  34. X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7, 855–881 (2013). [CrossRef]
  35. A. Edelmann, L. Moeller, and J. Jahns, “Coupling of terahertz radiation to metallic wire using end-fire technique,” Electron. Lett. 49, 884–886 (2013). [CrossRef]
  36. Z. Zheng, N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Efficient coupling of propagating broadband terahertz radial beams to metal wires,” Opt. Express 21, 10642–10650 (2013). [CrossRef]
  37. M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95, 233506 (2009). [CrossRef]
  38. H. Pahlevaninezhad, T. E. Darcie, and B. Heshmat, “Two-wire waveguide for terahertz,” Opt. Express 18, 7415–7420 (2010). [CrossRef]
  39. H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18, 9643–9650 (2010). [CrossRef]
  40. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999), Chap. 8, pp. 352–361.
  41. A. W. Snyder and J. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  42. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004). [CrossRef]
  43. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008). [CrossRef]
  44. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3, 283–286 (2009). [CrossRef]
  45. C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013). [CrossRef]
  46. A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Opt. Express 16, 18576–18589 (2008). [CrossRef]
  47. M. Ordal, R. J. Bell, R. Alexander, L. Long, and M. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493–4499 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited