OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 293–300

Vertical mode expansion method for transmission of light through a single circular hole in a slab

Xun Lu, Hualiang Shi, and Ya Yan Lu  »View Author Affiliations

JOSA A, Vol. 31, Issue 2, pp. 293-300 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (572 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An efficient method is developed for rigorously analyzing the scattering of light by a layered circular cylindrical object in a layered background, and it is applied to the study of the transmission of light through a subwavelength hole in a metallic film, where the hole may be filled by a dielectric material. The method relies on expanding the electromagnetic field (subtracted by one-dimensional solutions of the layered media) in one-dimensional modes, where the expansion “coefficients” are functions satisfying two-dimensional Helmholtz equations. A system of equations is established on the boundary of the circular cylinder to solve the expansion “coefficients.” The method effectively reduces the original three-dimensional scattering problem to a two-dimensional problem on the boundary of the cylinder.

© 2014 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Diffraction and Gratings

Original Manuscript: November 13, 2013
Manuscript Accepted: December 12, 2013
Published: January 20, 2014

Xun Lu, Hualiang Shi, and Ya Yan Lu, "Vertical mode expansion method for transmission of light through a single circular hole in a slab," J. Opt. Soc. Am. A 31, 293-300 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  2. T. W. Ebbesen, H. J. Lezec, G. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  3. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001). [CrossRef]
  4. F. J. García-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  5. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  6. J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, 2002).
  7. G. Bao, Z. M. Chen, and H. J. Wu, “Adaptive finite-element method for diffraction gratings,” J. Opt. Soc. Am. A 22, 1106–1114 (2005). [CrossRef]
  8. W. C. Chew, M. S. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves (Morgan & Claypool, 2009).
  9. J.-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems (Springer, 2001).
  10. J. Mu and W. P. Huang, “Simulation of three-dimensional waveguide discontinuities by a full-vector mode-matching method based on finite-difference schemes,” Opt. Express 16, 18152–18163 (2008). [CrossRef]
  11. R. Wang, L. Han, J. Mu, and W. P. Huang, “Simulation of waveguide crossings and corners with complex mode-matching method,” J. Lightwave Technol. 30, 1795–1801 (2012). [CrossRef]
  12. W. P. Huang, L. Han, and J. Mu, “A rigorous circuit model for simulation of large-scale photonic integrated circuits,” IEEE Photon. J. 4, 1622–1638 (2012). [CrossRef]
  13. E. Silberstein, P. Lalanne, J.-P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001). [CrossRef]
  14. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  15. W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwells equations with stretched coordinates,” Microw. Opt. Technol. Lett. 7, 599–604 (1994). [CrossRef]
  16. L. N. Trefethen, Spectral Methods in MATLAB (Society for Industrial and Applied Mathematics, 2000).
  17. S. Boscolo and M. Midrio, “Three-dimensional multiple-scattering technique for the analysis of photonic-crystal slabs,” J. Lightwave Technol. 22, 2778–2786 (2004). [CrossRef]
  18. D. Pissoort, E. Michielssen, D. V. Ginste, and F. Olyslager, “Fast-multipole analysis of electromagnetic scattering by photonic crystal slabs,” J. Lightwave Technol. 25, 2847–2863 (2007). [CrossRef]
  19. L. Yuan and Y. Y. Lu, “Dirichlet-to-Neumann map method for analyzing hole arrays in a slab,” J. Opt. Soc. Am. B 27, 2568–2579 (2010). [CrossRef]
  20. L. Yuan and Y. Y. Lu, “An efficient numerical method for analyzing photonic crystal slab waveguides,” J. Opt. Soc. Am. B 28, 2265–2270 (2011). [CrossRef]
  21. R. P. Wang and M.-M. Dumitrescu, “Theory of optical modes in semiconductor microdisk lasers,” J. Appl. Phys. 81, 3391–3397 (1997). [CrossRef]
  22. D. Song, L. Yuan, and Y. Y. Lu, “Fourier-matching pseudospectral modal method for diffraction gratings,” J. Opt. Soc. Am. A 28, 613–620 (2011). [CrossRef]
  23. G. Granet, “Fourier-matching pseudospectral modal method for diffraction gratings: comment,” J. Opt. Soc. Am. A 29, 1843–1845 (2012). [CrossRef]
  24. D. Song and Y. Y. Lu, “Pseudospectral modal method for conical diffraction of gratings,” J. Mod. Opt., doi: 10.1080/09500340.2013.856484 (to be published). [CrossRef]
  25. H. Derudder, D. De Zutter, and F. Olyslager, “Analysis of waveguide discontinuities using perfectly matched layers,” Electron. Lett. 34, 2138–2140 (1998). [CrossRef]
  26. F. Olyslager, “Discretization of continuous spectra based on perfectly matched layers,” SIAM J. Appl. Math. 64, 1408–1433 (2004). [CrossRef]
  27. E. Popov, N. Bonod, M. Nevière, H. Rigneault, P.-F. Lenne, and P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 44, 2332–2337 (2005). [CrossRef]
  28. N. Bonod, E. Popov, and M. Nevière, “Differential theory of diffraction by finite cylindrical objects,” J. Opt. Soc. Am. A 22, 481–490 (2005). [CrossRef]
  29. F. J. Garcia de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10, 1475–1484 (2002). [CrossRef]
  30. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Morento, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005). [CrossRef]
  31. J. Olkkonen, K. Kataja, and D. Howe, “Light transmission through a high index dielectric-filled sub-wavelength hole in a metal film,” Opt. Express 13, 6980–6989 (2005). [CrossRef]
  32. H. Xu, P. Zhu, H. G. Craighead, and W. W. Webb, “Resonantly enhanced transmission of light through subwavelength apertures with dielectric filling,” Opt. Commun. 282, 1467–1471 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited