OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 312–321

Use of commercial off-the-shelf digital cameras for scientific data acquisition and scene-specific color calibration

Derya Akkaynak, Tali Treibitz, Bei Xiao, Umut A. Gürkan, Justine J. Allen, Utkan Demirci, and Roger T. Hanlon  »View Author Affiliations


JOSA A, Vol. 31, Issue 2, pp. 312-321 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000312


View Full Text Article

Enhanced HTML    Acrobat PDF (1420 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Commercial off-the-shelf digital cameras are inexpensive and easy-to-use instruments that can be used for quantitative scientific data acquisition if images are captured in raw format and processed so that they maintain a linear relationship with scene radiance. Here we describe the image-processing steps required for consistent data acquisition with color cameras. In addition, we present a method for scene-specific color calibration that increases the accuracy of color capture when a scene contains colors that are not well represented in the gamut of a standard color-calibration target. We demonstrate applications of the proposed methodology in the fields of biomedical engineering, artwork photography, perception science, marine biology, and underwater imaging.

© 2014 Optical Society of America

OCIS Codes
(040.1490) Detectors : Cameras
(100.0100) Image processing : Image processing
(110.0110) Imaging systems : Imaging systems
(010.1690) Atmospheric and oceanic optics : Color

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: July 12, 2013
Revised Manuscript: November 13, 2013
Manuscript Accepted: December 5, 2013
Published: January 20, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Derya Akkaynak, Tali Treibitz, Bei Xiao, Umut A. Gürkan, Justine J. Allen, Utkan Demirci, and Roger T. Hanlon, "Use of commercial off-the-shelf digital cameras for scientific data acquisition and scene-specific color calibration," J. Opt. Soc. Am. A 31, 312-321 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-2-312


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Chakrabarti, D. Scharstein, and T. Zickler, “An empirical camera model for internet color vision,” in Proceedings of British Machine Vision Conference (2009), p. 51.1.
  2. K. Seon Joo, L. Hai Ting, L. Zheng, S. Süsstrunk, S. Lin, and M. S. Brown, “A new in-camera imaging model for color computer vision and its application,” IEEE Trans. Pattern Anal. Mach. Intell. 34, 2289–2302 (2012). [CrossRef]
  3. H. Farid, “That looks fake!” (2011), retrieved http://www.fourandsix.com/blog/2011/6/29/that-looks-fake.html .
  4. N. Levin, E. Ben-Dor, and A. Singer, “A digital camera as a tool to measure colour indices and related properties of sandy soils in semi-arid environments,” Int. J. Remote Sens. 26, 5475–5492 (2005). [CrossRef]
  5. E. De La Barrera and W. K. Smith, Perspectives in Biophysical Plant Ecophysiology: A Tribute to Park S. Nobel (Unam, 2009).
  6. B. D. McKay, “The use of digital photography in systematics,” Biol. J. Linn. Soc. 110, 1–13 (2013). [CrossRef]
  7. M. Stevens, C. A. Parraga, I. C. Cuthill, J. C. Partridge, and T. S. Troscianko, “Using digital photography to study animal coloration,” Biol. J. Linn. Soc. 90, 211–237 (2007). [CrossRef]
  8. A. G. Wee, D. T. Lindsey, S. Kuo, and W. M. Johnston, “Color accuracy of commercial digital cameras for use in dentistry,” Dent. Mater. 22, 553–559 (2006). [CrossRef]
  9. J. Åhlén, Colour Correction of Underwater Images Using Spectral Data (Uppsala University, 2005).
  10. D. Akkaynak, E. Chan, J. J. Allen, and R. T. Hanlon, “Using spectrometry and photography to study color underwater,” in OCEANS (IEEE, 2011), pp. 1–8.
  11. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data, and Formulae, 2nd illustrated ed. (Wiley, 2000).
  12. E. Reinhard, E. Khan, A. Akyüz, and G. Johnson, Color Imaging: Fundamentals and Applications (A K Peters, 2008).
  13. R. Szeliski, Computer Vision: Algorithms and Applications (Springer, 2010).
  14. R. Ramanath, W. E. Snyder, G. L. Bilbro, and W. A. Sander, “Demosaicking methods for Bayer color arrays,” J. Electron. Imaging 11, 306–315 (2002). [CrossRef]
  15. G. D. Finlayson and M. S. Drew, “White-point preserving color correction,” in Color and Imaging Conference (Society for Imaging Science and Technology, 1997), pp. 258–261.
  16. S. E. Süsstrunk, J. M. Holm, and G. D. Finlayson, “Chromatic adaptation performance of different RGB sensors,” in Photonics West 2001-Electronic Imaging (International Society for Optics and Photonics, 2000), pp. 172–183.
  17. S. Westland and C. Ripamonti, Computational Colour Science Using MATLAB (Wiley, 2004).
  18. A. Alsam and G. Finlayson, “Integer programming for optimal reduction of calibration targets,” Color Res. Appl. 33, 212–220 (2008). [CrossRef]
  19. J. Nakamura, Image Sensors and Signal Processing for Digital Still Cameras (Taylor & Francis, 2005).
  20. C. Mauer and D. Wueller, “Measuring the spectral response with a set of interference filters,” in IS&T/SPIE Electronic Imaging (International Society for Optics and Photonics, 2009), paper 72500S.
  21. G. Finlayson, S. Hordley, and P. M. Hubel, “Recovering device sensitivities with quadratic programming,” in IS&T/SID Sixth Color Imaging Conference: Color Science, Systems and Applications (1998).
  22. G. Hong, M. R. Luo, and P. A. Rhodes, “A study of digital camera colorimetric characterisation based on polynomial modelling,” Color Res. Appl. 26, 76–84 (2001). [CrossRef]
  23. K. Barnard and B. Funt, “Camera characterization for color research,” Color Res. Appl. 27, 152–163 (2002). [CrossRef]
  24. V. Cheung, S. Westland, C. Li, J. Hardeberg, and D. Connah, “Characterization of trichromatic color cameras by using a new multispectral imaging technique,” J. Opt. Soc. Am. A 22, 1231–1240 (2005). [CrossRef]
  25. J. Jiang, D. Liu, J. Gu, and S. Süsstrunk, “What is the space of spectral sensitivity functions for digital color cameras?” in IEEE Workshop on the Applications of Computer Vision (IEEE, 2013), pp. 168–179.
  26. S. E. Arnold, S. Faruq, V. Savolainen, P. W. McOwan, and L. Chittka, “FReD: the floral reflectance database, A web portal for analyses of flower colour,” PloS one 5, e14287 (2010).
  27. U. A. Gurkan, S. Tasoglu, D. Akkaynak, O. Avci, S. Unluisler, S. Canikyan, N. MacCallum, and U. Demirci, “Smart interface materials integrated with microfluidics for on-demand local capture and release of cells,” Adv. Healthcare Mat. 1, 661–668 (2012). [CrossRef]
  28. M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001). [CrossRef]
  29. M. R. Rosen and F. S. Frey, “RIT American museums survey on digital imaging for direct capture of artwork,” in Society for Imaging Science and Technology Archiving Conference (2005).
  30. F. S. Frey and S. P. Farnand, “Benchmarking art image interchange cycles,” Tech. Rep. (Rochester Institute of Technology, 2011).
  31. D. Akkaynak, J. Allen, L. Mäthger, C.-C. Chiao, and R. Hanlon, “Quantification of cuttlefish (Sepia officinalis) camouflage: a study of color and luminance using in situ spectrometry,” J. Comp. Physiol. A 199, 211–225 (2013). [CrossRef]
  32. U. Siebeck, N. Marshall, A. Klüter, and O. Hoegh-Guldberg, “Monitoring coral bleaching using a colour reference card,” Coral Reefs 25, 453–460 (2006). [CrossRef]
  33. G. Winters, R. Holzman, A. Blekhman, S. Beer, and Y. Loya, “Photographic assessment of coral chlorophyll contents: implications for ecophysiological studies and coral monitoring,” J. Exp. Mar. Biol. Ecol. 380, 25–35 (2009). [CrossRef]
  34. T. W. Pike, “Using digital cameras to investigate animal colouration: estimating sensor sensitivity functions,” Behav. Ecol. Sociobiol. 65, 849–858 (2011). [CrossRef]
  35. D. Stavenga, R. Smits, and B. Hoenders, “Simple exponential functions describing the absorbance bands of visual pigment spectra,” Vis. Res. 33, 1011–1017 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited