OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 348–362

Modeling lateral geniculate nucleus response with contrast gain control. Part 2: analysis

Davis Cope, Barbara Blakeslee, and Mark E. McCourt  »View Author Affiliations

JOSA A, Vol. 31, Issue 2, pp. 348-362 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1142 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cope et al. [J. Opt. Soc. Am. A 30, 2401 (2013)] proposed a class of models for lateral geniculate nucleus (LGN) ON-cell behavior consisting of a linear response with divisive normalization by local stimulus contrast. Here, we analyze a specific model with the linear response defined by a difference-of-Gaussians filter, and a circular Gaussian for the gain pool weighting function. For sinusoidal grating stimuli, the parameter region for bandpass behavior of the linear response is determined, and the gain control response is shown to act as a switch (changing from “off” to “on” with increasing spatial frequency). It is also shown that large gain pools stabilize the optimal spatial frequency of the total nonlinear response at a fixed value independent of contrast and stimulus magnitude. Under- and super-saturation, as well as contrast saturation, occur as typical effects of stimulus magnitude. For circular spot stimuli, it is shown that large gain pools stabilize the spot size that yields the maximum response.

© 2014 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.6110) Vision, color, and visual optics : Spatial filtering
(330.7320) Vision, color, and visual optics : Vision adaptation

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: July 17, 2013
Revised Manuscript: December 6, 2013
Manuscript Accepted: December 13, 2013
Published: January 23, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Davis Cope, Barbara Blakeslee, and Mark E. McCourt, "Modeling lateral geniculate nucleus response with contrast gain control. Part 2: analysis," J. Opt. Soc. Am. A 31, 348-362 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Cope, B. Blakeslee, and M. E. McCourt, “Modeling lateral geniculate nucleus response with contrast gain control. part 1: formulation,” J. Opt. Soc. Am. A 30, 2401–2408 (2013). [CrossRef]
  2. J. G. Robson, “Neural images: the physiological basis of spatial vision,” in Visual Coding and Adaptability, C. S. Harris, ed. (Lawrence Erlbaum Associates, 1980), pp. 177–214.
  3. M. Carandini and D. J. Heeger, “Normalization as a canonical neural computation,” Nat. Rev. Neurosci. 13, 51–62 (2012). [CrossRef]
  4. A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).
  5. E. Kaplan, K. Purpura, and R. M. Shapley, “Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus,” J. Physiol. 391, 267–288 (1987).
  6. T. Shou, X. Li, Y. Zhou, and B. Hu, “Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings,” Vis. Neurosci. 13, 605–613 (1996). [CrossRef]
  7. A. Kayser, N. J. Priebe, and K. D. Miller, “Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning,” J. Neurophysiol. 85, 2130–2149 (2001).
  8. V. Bonin, V. Mante, and M. Carandini, “Nonlinear processing in LGN neurons,” in Advances in Neural Information Processing Systems 16, S. Thrun, L. Saul, and B. Schölkopf, eds. (MIT, 2004), pp. 1443–1450.
  9. S. G. Solomon, J. W. Peirce, N. T. Dhruv, and P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004). [CrossRef]
  10. V. Bonin, V. Mante, and M. Carandini, “The suppressive field of neurons in lateral geniculate nucleus,” J. Neurosci. 25, 10844–10856 (2005). [CrossRef]
  11. T. Duong and R. D. Freeman, “Spatial frequency-specific contrast adaptation originates in primary visual cortex,” J. Neurophysiol. 98, 187–195 (2007). [CrossRef]
  12. V. Mante, V. Bonin, and M. Carandini, “Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli,” Neuron 58, 625–638 (2008). [CrossRef]
  13. D. H. Hubel, “Single unit activity in the lateral geniculate body and optic tract of unrestrained cats,” J. Physiol. 150, 91–104 (1960).
  14. D. H. Hubel and T. N. Wiesel, “Integrative action in the cat’s lateral geniculate body,” J. Physiol. 155, 385–398 (1961).
  15. G. H. Jacobs and R. L. Yolton, “Center-surround balance in receptive fields of cells in the lateral geniculate nucleus,” Vis. Res. 10, 1127–1144 (1970). [CrossRef]
  16. R. T. Marrocco, “Maintained activity of monkey optic tract fibers and lateral geniculate nucleus cells,” Vis. Res. 12, 1175–1181 (1972). [CrossRef]
  17. J. Papaioannou and A. White, “Maintained activity of lateral geniculate nucleus neurons as a function of background luminance,” Exp. Neurol. 34, 558–566 (1972). [CrossRef]
  18. R. T. Marrocco, “Possible neural basis for brightness magnitude estimates,” Brain Res. 86, 128–133 (1975). [CrossRef]
  19. R. B. Barlow and R. Verillo, “Brightness sensation in a ganzfeld,” Vis. Res. 16, 1291–1297 (1976). [CrossRef]
  20. R. W. Doty, “Tonic retinal influences in primates,” Ann. NY Acad. Sci. 290, 139–151 (1977). [CrossRef]
  21. P. D. Spear, D. C. Smith, and L. L. Williams, “Visual receptive-field properties of single neurons in cat’s ventral lateral geniculate nucleus,” J. Neurophysiol. 40, 390–409 (1977).
  22. R. B. Barlow, D. M. Snodderly, and H. A. Swadlow, “Intensity coding in primate visual system,” Exp. Brain Res. 31, 163–177 (1978). [CrossRef]
  23. Y. Kayama, R. R. Riso, J. R. Bartlett, and R. W. Doty, “Luxotonic responses of units in macaque striate cortex,” J. Neurophysiol. 42, 1495–1517 (1979).
  24. P. D. Spear, R. J. Moore, C. B. Y. Kim, J.-T. Xue, and N. Tumosa, “Effects of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young adult and old Rhesus monkeys,” J. Neurophysiol. 72, 402–420 (1994).
  25. S. D. Van Hooser, J. Alexander, F. Heimel, and S. B. Nelson, “Receptive field properties and laminar organization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinesis),” J. Neurophysiol. 90, 3398–3418 (2003). [CrossRef]
  26. T. R. Tucker and D. Fitzpatrick, “Luminance-evoked inhibition in primary visual cortex: a transient veto of simultaneous and ongoing response,” J. Neurosci. 26, 13537–13547 (2006). [CrossRef]
  27. H. J. Alitto, B. D. Moore, D. L. Rathburn, and W. M. Ursey, “A comparison of visual responses in the lateral geniculate nucleus of alert and anaesthetized macaque monkeys,” J. Physiol. 589, 87–99 (2011). [CrossRef]
  28. J. W. Pierce, “The potential importance of saturating and supersaturating contrast response functions in visual cortex,” J. Vis. 7(6):1, 1–10 (2007). [CrossRef]
  29. D. Cope, B. Blakeslee, and M. E. McCourt, “Analysis of multidimensional difference-of-Gaussians filters in terms of directly observable parameters,” J. Opt. Soc. Am. A 30, 1002–1012 (2013). [CrossRef]
  30. L. J. Croner and E. Kaplan, “Receptive fields of P and M ganglion cells across the primate retina,” Vis. Res. 35, 7–24 (1995). [CrossRef]
  31. G. Winterer and D. R. Weinberger, “Genes, dopamine and cortical signal-to-noise ratio in schizophrenia,” Trends Neurosci. 27, 683–690 (2004). [CrossRef]
  32. A. G. Leventhal, Y. Wang, M. Pu, Y. Zhou, and Y. Ma, “GABA and its agonists improved visual cortical function in senescent monkeys,” Science 300, 812–815 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited