OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 388–393

Highly resonant and directional optical nanoantennas

Jing Qi, Thomas Kaiser, Ralf Peuker, Thomas Pertsch, Falk Lederer, and Carsten Rockstuhl  »View Author Affiliations


JOSA A, Vol. 31, Issue 2, pp. 388-393 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000388


View Full Text Article

Enhanced HTML    Acrobat PDF (643 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasmonic nanoantennas permit many functional components for future generations of nanoscale optical devices. They have been intensively studied and means were devised to engineer their optical response. However, as a metal-based resonator, the low quality factor of a plasmonic antenna hinders its further applications. Here, we propose a novel design to improve the quality factor of a dipolar nanoantenna by combining it with plasmonic Bragg gratings. This specific antenna design can support extraordinary sharp resonances and highly directional emissivity. Therefore, it promises to achieve many novel applications, e.g., in the field of cavity quantum electrodynamics where the strong coupling regime for light and matter comes in reach.

© 2014 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(230.5750) Optical devices : Resonators
(260.3910) Physical optics : Metal optics
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optical Devices

History
Original Manuscript: November 25, 2013
Revised Manuscript: December 21, 2013
Manuscript Accepted: December 21, 2013
Published: January 28, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Jing Qi, Thomas Kaiser, Ralf Peuker, Thomas Pertsch, Falk Lederer, and Carsten Rockstuhl, "Highly resonant and directional optical nanoantennas," J. Opt. Soc. Am. A 31, 388-393 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-2-388


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  2. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011). [CrossRef]
  3. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009). [CrossRef]
  4. J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10, 3596–3603 (2010). [CrossRef]
  5. A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008). [CrossRef]
  6. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008). [CrossRef]
  7. S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale,” Phys. Rev. Lett. 109, 193902 (2012). [CrossRef]
  8. T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011). [CrossRef]
  9. R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 026802 (2010). [CrossRef]
  10. J. Zhang, W. Zhang, X. Zhu, J. Yang, J. Xu, and D. Yu, “Resonant slot nanoantennas for surface plasmon radiation in optical frequency range,” Appl. Phys. Lett. 100, 241115 (2012). [CrossRef]
  11. R. Filter, J. Qi, C. Rockstuhl, and F. Lederer, “Circular optical nanoantennas: an analytical theory,” Phys. Rev. B 85, 125429 (2012). [CrossRef]
  12. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005). [CrossRef]
  13. G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12, 5481–5486 (2012). [CrossRef]
  14. K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, “Enhanced second-harmonic generation from double resonant plasmonic antennae,” Opt. Express 20, 12860–12865 (2012). [CrossRef]
  15. M. Hentschel, T. Utikal, H. Giessen, and M. Lippitz, “Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas,” Nano Lett. 12, 3778–3782 (2012). [CrossRef]
  16. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010). [CrossRef]
  17. H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011). [CrossRef]
  18. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010). [CrossRef]
  19. D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical YagiUda nanoantenna array,” Nat. Commun. 2, 267 (2011). [CrossRef]
  20. S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84, 195405 (2011). [CrossRef]
  21. A. Hänsel, O. A. Egorov, S. B. Hasan, C. Rockstuhl, and F. Lederer, “Optical bistability in a doubly resonant χ(2)-nonlinear plasmonic nanocavity,” Phys. Rev. A 85, 053843 (2012). [CrossRef]
  22. G. Lévêque and O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006). [CrossRef]
  23. A. Baron, E. Devaux, J.-C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011). [CrossRef]
  24. C. Chen and P. Berini, “Grating couplers for broadside input and output coupling of long-range surface plasmons,” Opt. Express 18, 8006–8018 (2010). [CrossRef]
  25. G. Li, L. Cai, F. Xiao, Y. Pei, and A. Xu, “A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors,” Opt. Express 18, 10487–10499 (2010). [CrossRef]
  26. W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333, 1720–1723 (2011). [CrossRef]
  27. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007). [CrossRef]
  28. A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16, 1475–1480 (2008). [CrossRef]
  29. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garca-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002). [CrossRef]
  30. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  31. O. Mahboub, S. Carretero Palacios, C. Genet, F. J. Garca-Vida, S. G. Rodrigo, L. Martín-Moreno, and T. W. Ebbesen, “Optimization of bulls eye structures for transmission enhancement,” Opt. Express 18, 11292–11299 (2010). [CrossRef]
  32. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  33. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991). [CrossRef]
  34. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  35. J. P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22, 1844–1849 (2005). [CrossRef]
  36. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001). [CrossRef]
  37. P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett. 25, 1092–1094 (2000). [CrossRef]
  38. G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–11060 (2007). [CrossRef]
  39. K. S. Yee, “Numerical solution of initial boundary value problems involving maxwells equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  40. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  41. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005).
  42. K. Słowik, R. Filter, J. Straubel, F. Lederer, and C. Rockstuhl, “Strong coupling of optical nanoantennas and atomic systems,” Phys. Rev. B 88, 195414 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited