OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 394–403

Full-phase photon-counting double-random-phase encryption

Adam Markman and Bahram Javidi  »View Author Affiliations


JOSA A, Vol. 31, Issue 2, pp. 394-403 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000394


View Full Text Article

Enhanced HTML    Acrobat PDF (836 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate a full-phase-based photon-counting double-random-phase encryption (PC-DRPE) method. A PC technique is applied during the encryption process, creating sparse images. The statistical distribution of the PC decrypted data for full-phase encoding and amplitude-phase encoding are derived, and their statistical parameters are used for authentication. The performance of the full-phase PC-DRPE is compared with the amplitude-based PC-DRPE method. The PC decrypted images make it difficult to visually authenticate the input image; however, advanced correlation filters can be used to authenticate the decrypted images given the correct keys. Initial computational simulations show that the full-phase PC-DRPE has the potential to require fewer photons for authentication than the amplitude-based PC-DRPE.

© 2014 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(100.0100) Image processing : Image processing
(150.0150) Machine vision : Machine vision
(100.4998) Image processing : Pattern recognition, optical security and encryption

ToC Category:
Image Processing

History
Original Manuscript: September 5, 2013
Revised Manuscript: November 29, 2013
Manuscript Accepted: November 29, 2013
Published: January 29, 2014

Citation
Adam Markman and Bahram Javidi, "Full-phase photon-counting double-random-phase encryption," J. Opt. Soc. Am. A 31, 394-403 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-2-394


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995). [CrossRef]
  2. A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, “Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys,” Opt. Lett. 30, 1644–1646 (2005). [CrossRef]
  3. Y. Frauel, A. Castro, T. Naughton, and B. Javidi, “Resistance of the double random phase encryption against various attacks,” Opt. Express 15, 10253–10265 (2007). [CrossRef]
  4. N. Towghi, B. Javidi, and Z. Luo, “Fully phase encrypted image processor,” J. Opt. Soc. Am. A 16, 1915–1927 (1999). [CrossRef]
  5. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999). [CrossRef]
  6. E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595–6601 (2000). [CrossRef]
  7. O. Matoba, T. Nomura, E. P. Cabré, M. S. Millán, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128–1148 (2009). [CrossRef]
  8. H. Tashima, M. Takeda, H. Suzuki, T. Obi, M. Yamaguchi, and N. Ohyama, “Known plaintext attack on double random phase encoding using fingerprint as key and a method for avoiding the attack,” Opt. Express 18, 13772–13781 (2010). [CrossRef]
  9. X. Tan, O. Matoba, Y. Okada-Shudo, M. Ide, T. Shimura, and K. Kuroda, “Secure optical memory system with polarization encryption,” Appl. Opt. 40, 2310–2315 (2001). [CrossRef]
  10. J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encryption-decryption via lateral shifting of a random phase mask,” Opt. Commun. 259, 532–536 (2006). [CrossRef]
  11. P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett. 35, 2391–2393 (2010). [CrossRef]
  12. W. Chen and X. Chen, “Space-based optical image encryption,” Opt. Express 18, 27095–27104 (2010). [CrossRef]
  13. Y. Hayasaki, Y. Matsuba, A. Nagaoka, H. Yamamoto, and N. Nishida, “Hiding an image with a light-scattering medium and use of a contrast-discrimination method for readout,” Appl. Opt. 43, 1552–1558 (2004). [CrossRef]
  14. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25, 887–889 (2000). [CrossRef]
  15. Y. Li, K. Kreske, and J. Rosen, “Security and encryption optical systems based on a correlator with significant output images,” Appl. Opt. 39, 5295–5301 (2000). [CrossRef]
  16. S. Fukushima, T. Kurokawa, and Y. Sakai, “Image encipherment based on optical parallel processing using spatial light modulator,” IEEE Trans. Photon. Technol. Lett. 3, 1133–1135 (1991).
  17. B. Javidi, G. Zhang, and J. Li, “Encrypted optical memory using double-random phase encoding,” Appl. Opt. 36, 1054–1058 (1997). [CrossRef]
  18. J. Heanue, M. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995). [CrossRef]
  19. E. Pérez-Cabré, M. Cho, and B. Javidi, “Information authentication using photon-counting double-random-phase encrypted images,” Opt. Lett. 36, 22–24 (2011). [CrossRef]
  20. T. Nomura, S. Mikan, Y. Morimoto, and B. Javidi, “Secure optical data storage with random phase key codes by use of a configuration of a joint transform correlator,” Appl. Opt. 42, 1508–1514 (2003). [CrossRef]
  21. O. Matoba and B. Javidi, “Encrypted optical storage with angular multiplexing,” Appl. Opt. 38, 7288–7293 (1999). [CrossRef]
  22. M. Toishi, M. Hara, K. Tanaka, T. Tanaka, and K. Watanabe, “Novel encryption method using multi reference patterns in coaxial holographic data storage,” Jpn. J. Appl. Phys. 46, 3775–3781 (2007). [CrossRef]
  23. E. Johnson and J. Brasher, “Phase encryption of biometrics in diffractive optical elements,” Opt. Lett. 21, 1271–1273 (1996). [CrossRef]
  24. H. Suzuki, M. Yamaguchi, M. Yachida, N. Ohyama, H. Tashima, and T. Obi, “Experimental evaluation of fingerprint verification system based on double random phase encoding,” Opt. Express 14, 1755–1766 (2006). [CrossRef]
  25. F. Dubois, “Automatic spatial frequency selection algorithm for pattern recognition by correlation,” Appl. Opt. 32, 4365–4371 (1993). [CrossRef]
  26. F. Sadjadi and B. Javidi, Physics of Automatic Target Recognition (Springer, 2007).
  27. A. Mahalanobis and R. Muise, “Object specific image reconstruction using a compressive sensing architecture for application in surveillance systems,” IEEE Trans. Aerospace Electron. Syst. 45, 1167–1180 (2009). [CrossRef]
  28. B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989). [CrossRef]
  29. B. Javidi and J. Wang, “Design of filters to detect a noisy target in nonoverlapping background noise,” J. Opt. Soc. Am. A 11, 2604–2612 (1994). [CrossRef]
  30. B. Javidi and J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994). [CrossRef]
  31. P. Réfrégier, V. Laude, and B. Javidi, “Basic properties of nonlinear global filtering techniques and optimal discriminant solutions,” Appl. Opt. 34, 3915–3923 (1995). [CrossRef]
  32. J. W. Goodman, Statistical Optics (Wiley, 2000).
  33. B. Tavakoli, B. Javidi, and E. Watson, “Three dimensional visualization by photon counting computational integral imaging,” Opt. Express 16, 4426–4436 (2008). [CrossRef]
  34. M. Guillaume, P. Melon, P. Réfrégier, and A. Llebaria, “Maximum-likelihood estimation of an astronomical image from a sequence at low photon levels,” J. Opt. Soc. Am. A 15, 2841–2848 (1998). [CrossRef]
  35. D. Aloni, A. Stern, and B. Javidi, “Three-dimensional photon counting integral imaging reconstruction using penalized maximum likelihood expectation maximization,” Opt. Express 19, 19681–19687 (2011). [CrossRef]
  36. S. Shapiro and M. Wilk, “An analysis of variance test for normality (complete samples),” Biometrika 52, 591–611 (1965).
  37. N. Mukhopadhyay, Probability and Statistical Inference (Marcel Dekker, 2000).
  38. F. Massey, “The Kolmogorov–Smirnov test for goodness of fit,” J. Am. Stat. Assoc. 46, 68–78 (1951). [CrossRef]
  39. B. Efron, “Bootstrap methods: another look at the jackknife,” Ann. Stat. 7, 1–26 (1979). [CrossRef]
  40. N. I. Fisher, Statistical Analysis of Circular Data (Cambridge University, 1996).
  41. A. Vo and S. Oraintara, “On the distributions of the relative phase of complex wavelet coefficients,” in IEEE International Symposium on Circuits and Systems, J. Wang, Y. Huang, and Y. Lim, eds. (ISCAS, 2009), pp. 529–532.
  42. S. Jammalamadaka and A. SenGupta, Topics in Circular Statistics (World Scientific, 2001).
  43. K. Mardia and P. Jupp, Directional Statistics (Academic, 1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited