OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 411–420

Mathematical modeling of Fabry–Perot resonators: II. Uniformly converging multimode equivalent-circuit models

G. Hugh Song  »View Author Affiliations

JOSA A, Vol. 31, Issue 2, pp. 411-420 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (648 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on complex-variable analysis of a Fabry–Perot resonator as a multimode nonsymmetric two-port waveguide device, two versions of equivalent-circuit configurations are presented: Starting from a renewed study on single-mode two-pole circuits, we develop two respective multimode equivalent circuits of an almost identical configuration: one for the reflection coefficient and the other for the pass-through transmission coefficient. In the mathematics language of complex-variable analysis, the two models successfully “approximate” the two scattering coefficients through two “uniformly converging” partial-fraction series expansions.

© 2014 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(250.5300) Optoelectronics : Photonic integrated circuits
(070.5753) Fourier optics and signal processing : Resonators

ToC Category:
Diffraction and Gratings

Original Manuscript: September 17, 2013
Manuscript Accepted: December 12, 2013
Published: January 30, 2014

G. Hugh Song, "Mathematical modeling of Fabry–Perot resonators: II. Uniformly converging multimode equivalent-circuit models," J. Opt. Soc. Am. A 31, 411-420 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Fabry and A. Pérot, “Théorie et applications d’une nouvelle méthodes de spectroscopie interférentielle,” Annal. Chim. Phys. 16, 115–144 (1899).
  2. H. A. Haus and Y. Lai, “Narrow-band optical channel-dropping filter,” J. Lightwave Technol. 10, 57–62 (1992). [CrossRef]
  3. R. E. Collin, Foundations for Microwave Engineering, 2nd ed. (IEEE, 1992), Fig. 7.30.
  4. E. A. J. Marcatilli, “Bends in optical dielectric waveguides,” Bell Syst. Tech. J. 48, 2103–2132 (1969). [CrossRef]
  5. I. Ohtomo and S. Shimada, “A channel channel-dropping filter using ring resonators for the millimeter wave communication system,” Trans. Inst. Electron. Commun. Eng. Jpn. 52-B, 265–272 (1969).
  6. K. Hwang and G. H. Song, “Design of a high-Q channel add-drop multiplexer based on the two-dimensional photonic-crystal membrane structure,” Opt. Express 13, 1948–1957 (2005). [CrossRef]
  7. A. Melloni, M. Floridi, F. Morichetti, and M. Martinelli, “Equivalent circuit of Bragg gratings and its applications to Fabry–Pérot cavities,” J. Opt. Soc. Am. A 20, 273–281 (2003). [CrossRef]
  8. C. G. Montgomery, R. H. Dicke, and E. M. Purcell, eds., Principles of Microwave Circuits (McGraw-Hill, 1948).
  9. W. Culshaw, “Resonators for millimeter and submillimeter wavelengths,” IRE Trans. Microwave Theory Technol. MTT-9, 135–144 (1961). [CrossRef]
  10. R. E. Collin, Foundations for Microwave Engineering, 1st ed. (McGraw-Hill, 1966).
  11. A. E. Siegman, Lasers (University Science, 1986), pp. 934–939.
  12. H. A. Haus and Y. Lai, “Theory of cascaded quarter wave shifted distributed feedback resonators,” IEEE J. Quantum Electron. 28, 205–213 (1992). [CrossRef]
  13. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984), Fig. 9.9.
  14. T. Quarles, D. Pederson, R. Newton, A. Sangiovanni-Vincentelli, and C. Wayne, SPICE3 Version 3f3 User’s Manual (University of California, 1993), The SPICE Page http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/ .
  15. G. H. Song, “Mathematical modeling of Fabry–Perot resonators: I. Complex-variable analysis by uniformly convergent partial-fraction expansion,” J. Opt. Soc. Am. A31, 404–410 (2014)
  16. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999), Eq. (14). [CrossRef]
  17. A. Karp, H. J. Shaw, and D. K. Winslow, “Circuit properties of microwave dielectric resonators,” IEEE Trans. Microwave Theor. Technol. MTT-16, 818–828 (1968). [CrossRef]
  18. R. Beringer, “Resonant cavities as microwave circuit elements,” in Principles of Microwave Circuits, C. G. Montgomery, R. H. Dicke, and E. M. Purcell, eds. (McGraw-Hill, 1948), Chap. 7, Sect. 7.3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited