OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 3 — Mar. 1, 2014
  • pp: 487–492

Comparing efficiency and accuracy of the kinoform and the helical axicon as Bessel–Gauss beam generators

Victor Arrizón, Ulises Ruiz, Dilia Aguirre-Olivas, David Sánchez-de-la-Llave, and Andrey S. Ostrovsky  »View Author Affiliations


JOSA A, Vol. 31, Issue 3, pp. 487-492 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000487


View Full Text Article

Enhanced HTML    Acrobat PDF (747 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We compare two phase optical elements that are employed to generate approximate Bessel–Gauss beams of arbitrary order. These elements are the helical axicon (HA) and the kinoform of the desired Bessel–Gauss beam. The HA generates a Bessel beam (BB) by free propagation, and the kinoform is employed in a Fourier spatial filtering optical setup. As the main result, it is obtained that the error in the BBs generated with the kinoform is smaller than the error in the beams obtained with the HA. On the other hand, it is obtained that the efficiencies of the methods are approximately 1.0 (HA) and 0.7 (kinoform).

© 2014 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(090.1970) Holography : Diffractive optics
(350.7420) Other areas of optics : Waves
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Diffraction and Gratings

History
Original Manuscript: September 12, 2013
Revised Manuscript: December 22, 2013
Manuscript Accepted: December 24, 2013
Published: February 5, 2014

Citation
Victor Arrizón, Ulises Ruiz, Dilia Aguirre-Olivas, David Sánchez-de-la-Llave, and Andrey S. Ostrovsky, "Comparing efficiency and accuracy of the kinoform and the helical axicon as Bessel–Gauss beam generators," J. Opt. Soc. Am. A 31, 487-492 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-3-487


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005). [CrossRef]
  2. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5, 343–348 (2011). [CrossRef]
  3. A. Dudley, M. Lavery, M. Padgett, and A. Forbes, “Unraveling Bessel beams,” Opt. Photon. News 24(6), 22–29 (2013). [CrossRef]
  4. J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63, 063602 (2001). [CrossRef]
  5. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using self-reconstructing light beam,” Nature 419, 145–147 (2002). [CrossRef]
  6. J. E. Molloy, K. Dholakia, and M. Padgett, “Optical tweezers in a new light,” J. Mod. Opt. 50, 1501–1507 (2003). [CrossRef]
  7. T. Cizmár, V. Kllárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008). [CrossRef]
  8. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef]
  9. A. Vassara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989). [CrossRef]
  10. C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124, 121–130 (1996). [CrossRef]
  11. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000). [CrossRef]
  12. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A 24, 3500–3507 (2007). [CrossRef]
  13. T. Ando, Y. Ohtake, N. Matsumoto, T. Inoue, and N. Fukuchi, “Mode purities of Laguerre–Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators,” Opt. Lett. 34, 34–36 (2009). [CrossRef]
  14. J. A. Rodrigo, T. Alieva, A. Cámara, Ó. Martínez-Matos, P. Cheben, and M. L. Calvo, “Characterization of holographically generated beams via phase retrieval based on Wigner distribution projections,” Opt. Express 19, 6064–6077 (2011). [CrossRef]
  15. N. Chattrapiban, E. A. Rogers, D. Cofield, W. T. Hill, and R. Roy, “Generation of nondiffracting Bessel beams by use of a spatial light modulator,” Opt. Lett. 28, 2183–2185 (2003). [CrossRef]
  16. M. McLaren, J. Romero, M. J. Padgett, F. S. Roux, and A. Forbes, “Two-photon optics of Bessel-Gaussian modes,” http://arxiv.org/abs/1306.2767 .
  17. V. Arrizón, D. Sánchez-de-la-Llave, U. Ruiz, and G. Méndez, “Efficient generation of an arbitrary nondiffracting Bessel beam employing its phase modulation,” Opt. Lett. 34, 1456–1458 (2009). [CrossRef]
  18. M. McLaren, M. Agnew, J. Leach, F. S. Roux, M. J. Padgett, R. W. Boyd, and A. Forbes, “Entangled Bessel-Gaussian beams,” Opt. Express 20, 23589–23597 (2012). [CrossRef]
  19. W. P. Putnam, D. N. Schimpf, G. Abram, and F. X. Kärtner, “Bessel-Gauss beam enhancement cavities for high-intensity applications,” Opt. Express 20, 24429–24443 (2012). [CrossRef]
  20. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1966).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited