OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 3 — Mar. 1, 2014
  • pp: 500–504

Creation of a 50,000λ long needle-like field with 0.36λ width

Minning Zhu, Qing Cao, and Hua Gao  »View Author Affiliations

JOSA A, Vol. 31, Issue 3, pp. 500-504 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (398 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is a great challenge to create a needle-like field with properties of long beam length, narrow lateral width, uniformity, and high optical efficiency. Here we show a method that can realize these properties all at once. The key element is a 90° apex-angle concave conical mirror. By using this condenser along with a radially polarized incident beam of a specific field distribution, we numerically created a super slim, uniform, pure needle-like axially polarized field. This axially polarized field has a length of 50,000λ along the optical axis, and its lateral width still maintains a minimum 0.36λ size.

© 2014 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(050.1970) Diffraction and gratings : Diffractive optics
(080.2740) Geometric optics : Geometric optical design
(220.1770) Optical design and fabrication : Concentrators
(230.4040) Optical devices : Mirrors

ToC Category:
Optical Devices

Original Manuscript: November 8, 2013
Revised Manuscript: January 6, 2014
Manuscript Accepted: January 6, 2014
Published: February 5, 2014

Minning Zhu, Qing Cao, and Hua Gao, "Creation of a 50,000λ long needle-like field with 0.36λ width," J. Opt. Soc. Am. A 31, 500-504 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef]
  2. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, and D. H. Woo, “Vector field microscopic imaging of light,” Nat. Photonics 1, 53–56 (2007). [CrossRef]
  3. D. Ganic, X. Gan, and M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11, 2747–2752 (2003). [CrossRef]
  4. L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41, 3727–3732 (1990). [CrossRef]
  5. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. Ser. A 253, 358–379 (1959).
  6. K. Kitamura, K. Sakai, and S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express 18, 4518–4525 (2010). [CrossRef]
  7. O. Brzobohatý, T. Cizmár, and P. Zemánek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express 16, 12688–12700 (2008). [CrossRef]
  8. Y. Kozawa, K. Yonezawa, and S. Sato, “Radially polarized laser beam from a Nd:YAG laser cavity with a c-cut YVO4 crystal,” Appl. Phys. B 88, 43–46 (2007). [CrossRef]
  9. C.-C. Sun and C.-K. Liu, “Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation,” Opt. Lett. 28, 99–101 (2003). [CrossRef]
  10. Z. Bouchal and M. Olivík, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42, 1555–1566 (1995). [CrossRef]
  11. R. D. Romea and W. D. Kimura, “Modeling of inverse Čerenkov laser acceleration with axicon laser-beam focusing,” Phys. Rev. D 42, 1807–1818 (1990). [CrossRef]
  12. J. R. Fontana and R. H. Pantell, “A high-energy, laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54, 4285–4288 (1983). [CrossRef]
  13. J. Breuer and P. Hommelhoff, “Laser-based acceleration of nonrelativistic electrons at a dielectric structure,” Phys. Rev. Lett. 111, 134803 (2013). [CrossRef]
  14. S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012). [CrossRef]
  15. W. Kimura, G. Kim, R. Romea, L. Steinhauer, I. Pogorelsky, K. Kusche, R. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74, 546–549 (1995). [CrossRef]
  16. T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979). [CrossRef]
  17. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001). [CrossRef]
  18. B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000). [CrossRef]
  19. X. Hao, C. Kuang, Y. Li, and X. Liu, “A method for extending depth of focus in STED nanolithography,” J. Opt. 14, 045702 (2012). [CrossRef]
  20. E. Y. S. Yew and C. J. R. Sheppard, “Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams,” Opt. Commun. 275, 453–457 (2007). [CrossRef]
  21. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 13903 (2003). [CrossRef]
  22. N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85, 6239–6241 (2004). [CrossRef]
  23. H. Wang, G. Yuan, W. Tan, L. Shi, and T. Chong, “Spot size and depth of focus in optical data storage system,” Opt. Eng. 46, 065201 (2007). [CrossRef]
  24. H. Dehez, M. Piché, and Y. De Koninck, “Enhanced resolution in two-photon imaging using a TM(01) laser beam at a dielectric interface,” Opt. Lett. 34, 3601–3603 (2009). [CrossRef]
  25. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009). [CrossRef]
  26. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002). [CrossRef]
  27. T. Liu, J. Tan, J. Lin, and J. Liu, “Generating super-Gaussian light needle of 0.36 λ beam size and pure longitudinal polarization,” Opt. Eng. 52, 074104 (2013). [CrossRef]
  28. H. Dehez, A. April, and M. Piché, “Needles of longitudinally polarized light: guidelines for minimum spot size and tunable axial extent,” Opt. Express 20, 14891–14905 (2012). [CrossRef]
  29. S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system,” J. Mod. Opt. 58, 748–760 (2011). [CrossRef]
  30. C. Kuang, X. Hao, X. Liu, T. Wang, and Y. Ku, “Formation of sub-half-wavelength focal spot with ultra long depth of focus,” Opt. Commun. 284, 1766–1769 (2011). [CrossRef]
  31. J. Wang, W. Chen, and Q. Zhan, “Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation,” Opt. Express 18, 21965–21972 (2010). [CrossRef]
  32. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9, 4320–4325 (2009). [CrossRef]
  33. T. Cizmar and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17, 15558–15570 (2009). [CrossRef]
  34. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008). [CrossRef]
  35. C. J. R. Sheppard and A. A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322–4327 (2004). [CrossRef]
  36. C. J. Sheppard, “High-aperture beams,” J. Opt. Soc. Am. A 18, 1579–1587 (2001). [CrossRef]
  37. E. E. Ushakova and S. N. Kurilkina, “Formation of Bessel light pulses by means of a conical mirror,” J. Appl. Spectrosc. 77, 827–831 (2011). [CrossRef]
  38. K. B. Kuntz, B. Braverman, S. H. Youn, M. Lobino, E. M. Pessina, and A. I. Lvovsky, “Spatial and temporal characterization of a Bessel beam produced using a conical mirror,” Phys. Rev. A 79, 043802 (2009). [CrossRef]
  39. J. F. Fortin, G. Rousseau, N. McCarthy, and M. Piche, “Generation of quasi-Bessel beams and femtosecond optical X-waves with conical mirrors,” Proc. SPIE 4833, 876 (2003). [CrossRef]
  40. J. Durnin and J. J. Miceli, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef]
  41. V. N. Belyi, N. S. Kazak, S. N. Kurilkina, and N. A. Khilo, “Generation of TE- and TH-polarized Bessel beams using one-dimensional photonic crystal,” Opt. Commun. 282, 1998–2008 (2009). [CrossRef]
  42. Y. I. Salamin, “Low-diffraction direct particle acceleration by a radially polarized laser beam,” Phys. Lett. A 374, 4950–4953 (2010). [CrossRef]
  43. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), pp. 39–42.
  44. Z. Li, K. B. Alici, H. Caglayan, and E. Ozbay, “Generation of an axially asymmetric Bessel-like beam from a metallic subwavelength aperture,” Phys. Rev. Lett. 102, 143901 (2009). [CrossRef]
  45. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9, 2139–2143 (2009). [CrossRef]
  46. U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998). [CrossRef]
  47. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  48. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A 2, 48–51 (2000). [CrossRef]
  49. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 57403 (2002). [CrossRef]
  50. J. A. Hoffnagle and C. M. Jefferson, “Design and performance of a refractive optical system that converts a Gaussian to a flattop beam,” Appl. Opt. 39, 5488–5499 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited