OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 3 — Mar. 1, 2014
  • pp: 569–579

Visualization of retinal vascular structure and perfusion with a nonconfocal adaptive optics scanning light ophthalmoscope

Yusufu N. Sulai, Drew Scoles, Zachary Harvey, and Alfredo Dubra  »View Author Affiliations

JOSA A, Vol. 31, Issue 3, pp. 569-579 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2319 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Imaging of the retinal vascular structure and perfusion was explored by confocal illumination and nonconfocal detection in an adaptive optics scanning light ophthalmoscope (AOSLO), as an extension of the work by Chui et al. [Biomed. Opt. Express 3, 2537 (2012)]. Five different detection schemes were evaluated at multiple retinal locations: circular mask, annular mask, circular mask with filament, knife-edge, and split-detector. Given the superior image contrast in the reflectance and perfusion maps, the split-detection method was further tested using pupil apodization, polarized detection, and four different wavelengths. None of these variations provided noticeable contrast improvement. The noninvasive visualization of capillary flow and structure provided by AOSLO split-detection shows great promise for studying ocular and systemic conditions that affect the retinal vasculature.

© 2014 Optical Society of America

OCIS Codes
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4470) Medical optics and biotechnology : Ophthalmology
(290.4210) Scattering : Multiple scattering
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: November 15, 2013
Revised Manuscript: January 2, 2014
Manuscript Accepted: January 3, 2014
Published: February 14, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics
March 21, 2014 Spotlight on Optics

Yusufu N. Sulai, Drew Scoles, Zachary Harvey, and Alfredo Dubra, "Visualization of retinal vascular structure and perfusion with a nonconfocal adaptive optics scanning light ophthalmoscope," J. Opt. Soc. Am. A 31, 569-579 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Patton, T. Aslam, T. MacGillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures,” J. Anat. 206, 319–348 (2005).
  2. E. M. Kohner, A. M. Hamilton, S. J. Saunders, B. A. Sutcliffe, and C. J. Bulpitt, “The retinal blood flow in diabetes,” Diabetologia 11, 27–33 (1975). [CrossRef]
  3. A. D. Kulkarni and B. D. Kuppermann, “Wet age-related macular degeneration,” Adv. Drug Deliv. Rev. 57, 1994–2009 (2005).
  4. J. D. Gass and R. T. Oyakawa, “Idiopathic juxtafoveolar retinal telangiectasis,” Arch. Ophthalmol. 100, 769–780 (1982).
  5. W. H. Stern and D. B. Archer, “Retinal vascular occlusion,” Annu. Rev. Med. 32, 101–106 (1981).
  6. S. Wolf, O. Arend, W. E. Sponsel, K. Schulte, L. B. Cantor, and M. Reim, “Retinal hemodynamics using scanning laser ophthalmoscopy and hemorheology in chronic open-angle glaucoma,” Ophthalmology 100, 1561–1566 (1993). [CrossRef]
  7. T. J. Ffytche, J. S. Shilling, I. H. Chisholm, and J. L. Federman, “Indications for fluorescein angiography in disease of the ocular fundus: a review,” J. R. Soc. Med. 73, 362–365 (1980).
  8. P. E. Stanga, J. I. Lim, and P. Hamilton, “Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update,” Ophthalmology 110, 15–21 (2003). [CrossRef]
  9. B. I. Chazan, M. C. Balodimos, and L. Koncz, “Untoward effects of fluorescein retinal angiography in diabetic patients,” Ann. Ophthalmol. 3, 42 (1971).
  10. A. V. Cideciyan, S. G. Jacobson, T. S. Aleman, D. Gu, S. E. Pearce-Kelling, A. Sumaroka, G. M. Acland, and G. D. Aguirre, “In vivo dynamics of retinal injury and repair in the rhodopsin mutant dog model of human retinitis pigmentosa,” Proc. Natl. Acad. Sci. USA 102, 5233–5238 (2005).
  11. T. Tanaka, C. Riva, and I. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186, 830–831 (1974). [CrossRef]
  12. C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Investig. Ophthalmol. Vis. Sci. 26, 1124–1132 (1985).
  13. S. Wolf, O. Arend, H. Toonen, B. Bertram, F. Jung, and M. Reim, “Retinal capillary blood flow measurement with a scanning laser ophthalmoscope. Preliminary results,” Ophthalmology 98, 996–1000 (1991). [CrossRef]
  14. G. Michelson and B. Schmauss, “Two dimensional mapping of the perfusion of the retina and optic nerve head,” Br. J. Ophthalmol. 79, 1126–1132 (1995).
  15. Y. Tamaki, M. Araie, K. Tomita, M. Nagahara, A. Tomidokoro, and H. Fujii, “Real-time measurement of human optic nerve head and choroid circulation, using the laser speckle phenomenon,” Jpn. J. Ophthalmol. 41, 49–54 (1997).
  16. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett. 25, 1448–1450 (2000). [CrossRef]
  17. D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36, 57–66 (2005).
  18. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17, 22190–22200 (2009). [CrossRef]
  19. J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2, 781–793 (2011). [CrossRef]
  20. P. Bedggood and A. Metha, “Direct visualization and characterization of erythrocyte flow in human retinal capillaries,” Biomed. Opt. Express 3, 3264–3277 (2012). [CrossRef]
  21. J. Tam, J. A. Martin, and A. Roorda, “Non-invasive visualization and analysis of parafoveal capillaries in humans,” Investig. Ophthamol. Vis. Sci. 51, 1691–1698 (2010).
  22. A. M. Dubis, B. R. Hansen, R. F. Cooper, J. Beringer, A. Dubra, and J. Carroll, “Relationship between the foveal avascular zone and foveal pit morphology,” Investig. Ophthamol. Vis. Sci. 53, 1628–1636 (2012).
  23. T. Y. P. Chui, Z. Zhong, H. Song, and S. A. Burns, “Foveal avascular zone and its relationship to foveal pit shape,” Optom. Vis. Sci. 89, 602–661 (2012).
  24. K. Kurokawa, K. Sasaki, S. Makita, Y. J. Hong, and Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics,” Opt. Express 20, 22796–22812 (2012). [CrossRef]
  25. D. Scoles, D. C. Gray, J. J. Hunter, R. Wolfe, B. P. Gee, Y. Geng, B. D. Masella, R. T. Libby, S. Russell, D. R. Williams, and W. H. Merigan, “In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison,” BMC Ophthalmol. 9, 9 (2009).
  26. A. Pinhas, M. Dubow, N. Shah, T. Y. P. Chui, D. H. Scoles, Y. N. Sulai, R. Weitz, J. B. Walsh, J. Carroll, A. Dubra, and R. B. Rosen, “In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography,” Biomed. Opt. Express 4, 1305–1317 (2013). [CrossRef]
  27. T. Y. P. Chui, T. J. Gast, and S. A. Burns, “Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy,” Investig. Ophthamol. Vis. Sci. 54, 7115–7124 (2013).
  28. T. Y. P. Chui, D. A. VanNasdale, and S. A. Burns, “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 3, 2537–2549 (2012). [CrossRef]
  29. R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26, 1492–1499 (1987). [CrossRef]
  30. A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2, 1757–1768 (2011). [CrossRef]
  31. D. Scoles, Y. N. Sulai, and A. Dubra, “In vivo dark-field imaging of the retinal pigment epithelium cellmosaic,” Biomed. Opt. Express 4, 1710–1723 (2013). [CrossRef]
  32. T. Wilson and D. K. Hamilton, “Differential amplitude contrast imaging in the scanning optical microscope,” Appl. Phys. B 32, 187–191 (1983). [CrossRef]
  33. E. H. Linfoot and E. Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. B 66, 145 (1953).
  34. Y. N. Sulai and A. Dubra, “Adaptive optics scanning ophthalmoscopy with annular pupils,” Biomed. Opt. Express 3, 1647–1661 (2012). [CrossRef]
  35. , “American national standard for safe use of lasers,” Laser Institute of America, 2007.
  36. F. C. Delori, R. H. Webb, and D. H. Sliney, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24, 1250–1265 (2007). [CrossRef]
  37. A. Dubra and Z. Harvey, “Registration of 2D images from fast scanning ophthalmic instruments,” in The 4th International Workshop on Biomedical Image Registration, Lübeck, Germany (2010), pp. 60–71.
  38. M. Born and E. Wolf, Principles of Optics, 6th (corrected) ed. (Pergamon, 1980).
  39. D. S. Greenfield, R. W. Knighton, and X. R. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129, 715–722 (2000).
  40. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Invivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002). [CrossRef]
  41. B. Cense, W. Gao, J. M. Brown, S. M. Jones, R. S. Jonnal, M. Mujat, B. H. Park, J. F. de Boer, and D. T. Miller, “Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics,” Opt. Express 17, 21634–21651 (2009). [CrossRef]
  42. L. J. Bour, “Polarized light and the eye,” in Vision and Visual Dysfunction, J. R. Cronly-Dillon, ed. (MacMillan, 1991), pp. 310–325.
  43. R. W. Knighton and X. R. Huang, “Linear birefringence of the central human cornea,” Investig. Ophthamol. Vis. Sci. 43, 82–86 (2002).
  44. J. M. Bueno and M. C. W. Campbell, “Polarization properties of the in vitro old human crystalline lens,” Ophthalmic Physiolog. Opt. 23, 109–118 (2003).
  45. G. J. Nomarski, “Microintérferomtrè différentiel à ondes polarisées,” J. Physiol. Paris 16, S9–S13 (1955).
  46. D. K. Hamilton and C. J. R. Sheppard, “Differential phase-contrast in scanning optical microscopy,” J. Microsc. 133, 27–39 (1984). [CrossRef]
  47. T. N. Ford, K. K. Chu, and J. Mertz, “Phase-gradient microscopy in thick tissue with oblique back-illumination,” Nat. Methods 9, 1195–1197 (2012). [CrossRef]
  48. Y. Kawata, R. Juškaitis, T. Tanaka, T. Wilson, and S. Kawata, “Differential phase-contrast microscope with a split-detector for the readout system of a multilayered optical memory,” Appl. Opt. 35, 2466–2470 (1996). [CrossRef]
  49. W. B. Amos, S. Reichelt, D. M. Cattermole, and J. Laufer, “Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split-detector as an alternative to differential interference contrast (DIC) optics,” J. Microsc. 210, 166–175 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3302 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited