OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 3 — Mar. 1, 2014
  • pp: 621–627

Improving tangential resolution with a modified delay-and-sum reconstruction algorithm in photoacoustic and thermoacoustic tomography

Manojit Pramanik  »View Author Affiliations


JOSA A, Vol. 31, Issue 3, pp. 621-627 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000621


View Full Text Article

Enhanced HTML    Acrobat PDF (864 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spatial resolution in photoacoustic and thermoacoustic tomography is ultrasound transducer (detector) bandwidth limited. For a circular scanning geometry the axial (radial) resolution is not affected by the detector aperture, but the tangential (lateral) resolution is highly dependent on the aperture size, and it is also spatially varying (depending on the location relative to the scanning center). Several approaches have been reported to counter this problem by physically attaching a negative acoustic lens in front of the nonfocused transducer or by using virtual point detectors. Here, we have implemented a modified delay-and-sum reconstruction method, which takes into account the large aperture of the detector, leading to more than fivefold improvement in the tangential resolution in photoacoustic (and thermoacoustic) tomography. Three different types of numerical phantoms were used to validate our reconstruction method. It is also shown that we were able to preserve the shape of the reconstructed objects with the modified algorithm.

© 2014 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Imaging Systems

History
Original Manuscript: December 5, 2013
Revised Manuscript: January 23, 2014
Manuscript Accepted: January 23, 2014
Published: February 20, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Manojit Pramanik, "Improving tangential resolution with a modified delay-and-sum reconstruction algorithm in photoacoustic and thermoacoustic tomography," J. Opt. Soc. Am. A 31, 621-627 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-3-621


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. H. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012). [CrossRef]
  2. X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003). [CrossRef]
  3. G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005). [CrossRef]
  4. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009). [CrossRef]
  5. X. D. Wang, Y. J. Pang, G. Ku, G. Stoica, and L. H. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739–1741 (2003). [CrossRef]
  6. D. Piras, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010). [CrossRef]
  7. C. H. Li, L. H. V. Wang, A. Aguirre, J. Gamelin, A. Maurudis, and Q. Zhu, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15, 010509 (2010). [CrossRef]
  8. L. H. V. Wang, X. M. Zhao, H. T. Sun, and G. Ku, “Microwave-induced acoustic imaging of biological tissues,” Rev. Sci. Instrum. 70, 3744–3748 (1999). [CrossRef]
  9. R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999). [CrossRef]
  10. G. Ku and L. H. V. Wang, “Scanning microwave-induced thermoacoustic tomography: signal, resolution, and contrast,” Med. Phys. 28, 4–10 (2001). [CrossRef]
  11. G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. H. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. T. 4, 559–565 (2005).
  12. M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008). [CrossRef]
  13. D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37, 4602–4607 (2010). [CrossRef]
  14. M. Omar, S. Kellnberger, G. Sergiadis, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic imaging with transmission line pulsers,” Med. Phys. 39, 4460–4466 (2012). [CrossRef]
  15. M. H. Xu and L. H. V. Wang, “Pulsed-microwave-induced thermoacoustic tomography: filtered backprojection in a circular measurement configuration,” Med. Phys. 29, 1661–1669 (2002). [CrossRef]
  16. M. H. Xu and L. H. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging 21, 814–822 (2002).
  17. Y. Xu, D. Z. Feng, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. I: planar geometry,” IEEE Trans. Med. Imaging 21, 823–828 (2002).
  18. Y. Xu, M. H. Xu, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. II: cylindrical geometry,” IEEE Trans. Med. Imaging 21, 829–833 (2002).
  19. M. Xu and L. H. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005). [CrossRef]
  20. M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. H. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).
  21. P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13, 054052 (2008). [CrossRef]
  22. K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Med. Biol. 57, 5399–5423 (2012). [CrossRef]
  23. C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013). [CrossRef]
  24. C. Huang, K. Wang, L. Nie, L. H. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32, 1097–1110 (2013).
  25. J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Quantitative photoacoustic tomography with model-resolution based basis pursuit deconvolution,” Biomed. Opt. Express (submitted).
  26. M. H. Xu and L. H. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003). [CrossRef]
  27. N. A. Rejesh, H. Pullagurla, and M. Pramanik, “Deconvolution based deblurring of reconstructed images in photoacoustic/thermoacoustic tomography,” J. Opt. Soc. Am. A 30, 1994–2001 (2013). [CrossRef]
  28. C. H. Li, G. Ku, and L. H. V. Wang, “Negative lens concept for photoacoustic tomography,” Phys. Rev. E 78, 021901 (2008). [CrossRef]
  29. M. Pramanik, G. Ku, and L. H. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14, 024028 (2009). [CrossRef]
  30. W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1, 9–18 (2013). [CrossRef]
  31. W. Xia, D. Piras, M. K. A. Singh, J. C. G. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4, 2555–2569 (2013). [CrossRef]
  32. C. H. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93, 033902 (2008). [CrossRef]
  33. C. H. Li and L. H. V. Wang, “Photoacoustic tomography of the mouse cerebral cortex with a high-numerical-aperture-based virtual point detector,” J. Biomed. Opt. 14, 024047 (2009). [CrossRef]
  34. B. E. Treeby and B. T. Cox, “k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited